Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Viral Prophylaxis

Ex vivo generation of cytotoxic T lymphocytes specific for one or two distinct viruses for the prophylaxis of patients receiving an allogeneic bone marrow transplant

Abstract

Human adenovirus (AdV) infection and EBV-lymphoproliferative disease (LPD) are serious complications following allogeneic stem cell transplantation. In the healthy individual these viruses cause minor, self-limiting diseases but in the immunocompromised patient they are responsible for significant morbidity and mortality. The limitations of anti-viral drugs and a better understanding of the cellular immune response to viral pathogens have prompted interest in developing adoptive immunotherapy for transplant patients. Ex vivo expanded cytotoxic T lymphocytes (CTLs) specific for EBV have been used effectively both as prophylaxis against EBV-LPD and as treatment of established EBV+ lymphoma. To generate CTLs specific for AdV, we infected immature dendritic cells with virus, in the presence of lipid, and subsequently used these cells to stimulate PBMNCs. Cytotoxicity assays showed that the resulting CTLs specifically lysed AdV-expressing targets and that this was mediated predominantly by CD4+ T cells. To generate CTLs specific for both AdV and EBV, we developed a CD40 ligand co-culture system to infect B-lymphoblastoid cell lines (LCLs) with high efficiency. PBMNCs from healthy AdV-seropositive donors were stimulated weekly with autologous AdV+-LCLs. Chromium release assays demonstrated that the resultant CTLs had specificity against both EBV and AdV and that this was mediated by both CD4+ and CD8+ T cells. Our findings have potential implications for post-transplant AdV and EBV immunotherapy in recipients of allogeneic stem cell transplants. Bone Marrow Transplantation (2001) 27, 53–64.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Tosato G . The Epstein–Barr virus and the immune system Adv Cancer Res 1987 49: 75–125

    Article  CAS  Google Scholar 

  2. Hale GA, Heslop HE, Krance RA et al. Adenovirus infection after pediatric bone marrow transplantation Bone Marrow Transplant 1999 23: 277–282

    Article  CAS  Google Scholar 

  3. Shapiro RS, McClain K, Frizzera G et al. Epstein–Barr virus-associated B-cell lymphoproliferative disorders following bone marrow transplantation Blood 1988 71: 1234–1243

    CAS  PubMed  Google Scholar 

  4. Zutter MM, Martin PJ, Sale GE et al. Epstein–Barr virus lymphoproliferation after bone marrow transplantation Blood 1988 72: 520–529

    CAS  PubMed  Google Scholar 

  5. Papadopoulos EB, Ladanyi M, Emanuel D et al. Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation New Engl J Med 1994 330: 1185–1191

    Article  CAS  Google Scholar 

  6. Lucas KG, Burton RL, Zimmerman SE et al. Semiquantitative Epstein–Barr virus-(EBV) polymerase chain reaction for the determination of patients at risk for EBV-induced lymphoproliferative disease after stem cell transplantation Blood 1998 91: 3654–3661

    CAS  PubMed  Google Scholar 

  7. Lucas KG, Small TN, Heller G et al. The development of cellular immunity to Epstein–Barr virus after allogeneic bone marrow transplantion Blood 1996 87: 2594–2603

    CAS  PubMed  Google Scholar 

  8. Heslop HE, Ng CY, Li C et al. Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T-lymphocytes Nature Med 1996 2: 551–555

    Article  CAS  Google Scholar 

  9. Rooney CM, Smith CA, Loftin SK et al. Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus related lymphoproliferation Lancet 1995 345: 9–13

    Article  CAS  Google Scholar 

  10. Rooney CM, Smith CA, Ng CY et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients Blood 1998 92: 1549–1555

    CAS  PubMed  Google Scholar 

  11. Culmann B, Gomard E, Kleny MP et al. Six epitopes reacting with human cytotoxic CD8+ T cells in the central region of the HIV-1 NEF protein J Immunol 1991 146: 1560–1565

    CAS  PubMed  Google Scholar 

  12. Chu ET, Lareau M, Rosenwasser LJ et al. Antigen presentation by EBV-B cells to resting and activated T cells: role of interleukin 1 J Immunol 1985 134: 1676–1681

    CAS  PubMed  Google Scholar 

  13. Smith CA, Woodruff LS, Kitchingman GR, Rooney CM . Adenovirus-pulsed dendritic cells stimulate human virus-specific T-cells in vitro J Virol 1996 70: 6733–6740

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith CA, Woodruff LS, Rooney CM, Kitchingman GR . Extensive cross-reactivity of adenovirus-specific cytotoxic T-cells Hum Gene Ther 1998 9: 1419–1427

    Article  CAS  Google Scholar 

  15. Flomenberg P, Babbitt J, Drobyski WR et al. Increasing incidence of adenovirus disease in bone marrow transplant recipients J Infect Dis 1994 169: 775–781

    Article  CAS  Google Scholar 

  16. Cohen JI . The biology of Epstein–Barr virus: lessons learned from the virus and the host Curr Opin Immunol 1999 11: 365–370

    Article  CAS  Google Scholar 

  17. Horwitz MS, Sarvetnick N . Viruses, host-responses, and autoimmunity Immunol Rev 1999 169: 241–253

    Article  CAS  Google Scholar 

  18. Flomenberg P, Piaskowski V, Truitt RL, Casper JT . Characterization of human proliferative T cell responses to adenovirus J Infect Dis 1995 171: 1090–1096

    Article  CAS  Google Scholar 

  19. Hromas R, Cornetta K, Srour E et al. Donor leukocyte infusion as therapy of life-threatening adenoviral infections after T-cell-depleted bone marrow transplantation Blood 1994 84: 1689–1690

    CAS  PubMed  Google Scholar 

  20. Brodsky FM, Lem L, Solache A, Bennett EM . Human pathogen subversion of antigen presentation Immunol Rev 1999 168: 199–215

    Article  CAS  Google Scholar 

  21. Hengel H, Koszinowski UH . Interference with antigen processing by viruses Curr Opin Immunol 1997 9: 470–476

    Article  CAS  Google Scholar 

  22. Wold WS, Doronin K, Toth K et al. Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic Curr Opin Immunol 1999 11: 380–386

    Article  CAS  Google Scholar 

  23. Zhong L, Granelli-Piperno A, Choi Y, Steinman RM . Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells Eur J Immunol 1999 29: 964–972

    Article  CAS  Google Scholar 

  24. Zhou LJ, Tedder TF . CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells Proc Natl Acad Sci USA 1996 93: 2588–2592

    Article  CAS  Google Scholar 

  25. Romani N, Gruner S, Brang D et al. Proliferating dendritic cell progenitors in human blood J Exp Med 1994 180: 83–93

    Article  CAS  Google Scholar 

  26. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  Google Scholar 

  27. Steinman RM . The dendritic cell system and its role in imunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  Google Scholar 

  28. Brossart P, Goldrath AW, Butz EA et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  29. De Bruijn ML, Schuurhuis DH, Vierboom MP et al. Immunization with human papillomavirus type 16 (HPV 16) oncoprotein-loaded dendritic cells as well as protein in adjuvant induces MHC class I restricted protection to HPV-16 induced tumor cells Cancer Res 1998 58: 724–731

    CAS  PubMed  Google Scholar 

  30. Nair SK, Hull S, Coleman D et al. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA Int J Cancer 1999 82: 121–124

    Article  CAS  Google Scholar 

  31. Ribas A, Butterfield LH, McBride WH et al. Genetic immunization for the melanoma antigen MART-1/melan-A using recombinant adenovirus transduced murine dendritic cells Cancer Res 1997 57: 2865–2869

    CAS  PubMed  Google Scholar 

  32. Porgador A, Gilboa E . Bone-marrow generated dendritic cells pulsed with a class-I restricted peptide are potent inducers of cytotoxic T lymphocytes J Exp Med 1995 182: 255–260

    Article  CAS  Google Scholar 

  33. Bergelson JM, Cunningham JA, Droguett G et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  Google Scholar 

  34. Huang S, Endo RI, Nemerow GR . Upregulation of integrins αvβ3 and αvβ5 on human monocytes and T-lymphocytes facilitates adenovirus-mediated gene delivery J Virol 1995 69: 2257–2263

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  Google Scholar 

  36. Mathias P, Wickham T, Moore M, Nemerow G . Multiple adenovirus serotypes use αv integrins for infection J Virol 1994 68: 6811–6814

    CAS  PubMed  PubMed Central  Google Scholar 

  37. van Bergen J, Ossendorp F, Jordens R et al. Get into the groove! Targeting antigens to MHC class II Immunol Rev 1999 172: 87–96

    Article  CAS  Google Scholar 

  38. Steinman RM, Inaba K, Turley S et al. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies Hum Immunol 1999 60: 562–567

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hermann von Helmholtz Gemeinschaft (HGF), Deutsche Forschungszentren.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regn, S., Raffegerst, S., Chen, X. et al. Ex vivo generation of cytotoxic T lymphocytes specific for one or two distinct viruses for the prophylaxis of patients receiving an allogeneic bone marrow transplant. Bone Marrow Transplant 27, 53–64 (2001). https://doi.org/10.1038/sj.bmt.1702752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1702752

Keywords

This article is cited by

Search

Quick links