Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progenitor Cell Expansion

Stromal cell-dependent ex vivo expansion of human cord blood progenitors and augmentation of transplantable stem cell activity

Abstract

In vitro maintenance and expansion of human hematopoietic stem cells is crucial for many clinical applications. Thrombopoietin (TPO) and flt3/flk2 ligand (FL) have been suggested to support the proliferation of primitive hematopoietic progenitors and the expansion of transplantable stem cells in culture. In this study, we examined the synergistic effects of the murine stromal cell line MS-5 and a combination of the two cytokines, TPO and FL, on the ex vivo expansion of human cord blood primitive progenitors and transplantable stem cells. A monolayer of MS-5 cells with TPO/FL synergistically supported a more than 600-fold expansion of human cord blood CD34+ cells and CD34+CD38 cells in 2 weeks of culture. Colony-forming unit in culture (CFU-C) and 5-week and 8-week cobblestone area-forming cells (CAFC) were also expanded approximately 300-, 4- and 13-fold, respectively. When MS-5 cells were physically separated from progenitors by a Transwell filter, the synergy was reduced to a quarter of the control, suggesting that direct cell–cell contact between MS-5 cells and progenitors is required for maximum expansion. The severe-combined immunodeficient (scid) mouse-reconstituting cell (SRC) assay demonstrated the slight augmentation of transplantable stem cell activity in culture. These results indicated that MS-5 cells provide a milieu that stimulates the proliferation of primitive progenitors including transplantable stem cells. Bone Marrow Transplantation (2000) 26, 837–844.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Erslev AJ . Clinical erythrokinetics: a critical review Blood Rev 1997 11: 160–167

    Article  CAS  Google Scholar 

  2. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA . Neutrophil kinetics in man J Clin Invest 1976 58: 705–715

    Article  CAS  Google Scholar 

  3. Ogawa M . Differentiation of hematopoietic stem cells Blood 1993 81: 2844–2853

    CAS  PubMed  Google Scholar 

  4. Yonemura Y, Ku H, Hirayama F et al. Interleukin 3 or interleukin 1 abrogates the reconstituting ability of hematopoietic stem cells Proc Natl Acad Sci USA 1996 93: 4040–4044

    Article  CAS  Google Scholar 

  5. Yonemura Y, Ku H, Lyman SD, Ogawa M . In vitro expansion of hematopoietic progenitors and maintenance of stem cells: comparison between Flt3/Flk2 ligand and Kit ligand Blood 1997 89: 1915–1921

    CAS  PubMed  Google Scholar 

  6. Matsunaga T, Kato T, Miyazaki H, Ogawa M . Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of FLT3/FLK-2 ligand and interleukin-6 Blood 1998 92: 452–461

    CAS  PubMed  Google Scholar 

  7. Miller CL, Eaves CJ . Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability Proc Natl Acad Sci USA 1997 94: 13648–13653

    Article  CAS  Google Scholar 

  8. Conneally E, Cashman J, Petzer A, Eaves CJ . Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice Proc Natl Acad Sci USA 1997 94: 9836–9841

    Article  CAS  Google Scholar 

  9. Bhatia M, Bonnet D, Kapp U et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture J Exp Med 1997 186: 619–624

    Article  CAS  Google Scholar 

  10. Piacibello W, Sanavio F, Garetto L et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood Blood 1997 89: 2644–2653

    CAS  PubMed  Google Scholar 

  11. Piacibello W, Sanavio F, Severino A et al. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells Blood 1999 93: 3736–3749

    CAS  PubMed  Google Scholar 

  12. Wineman J, Moore K, Lemischka I, Muller-Sieburg C . Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells Blood 1996 87: 4082–4090

    CAS  PubMed  Google Scholar 

  13. Moore KA, Ema H, Lemischka IR . In vitro maintenance of highly purified, transplantable hematopoietic stem cells Blood 1997 89: 4337–4347

    CAS  PubMed  Google Scholar 

  14. Breems DA, Blokland EAW, Siebel KE et al. Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells Blood 1998 91: 111–117

    CAS  PubMed  Google Scholar 

  15. Xu M-J, Tsuji K, Ueda T et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic Aorta-Gonad-Mesonephros-derived stromal cell lines Blood 1998 92: 2032–2040

    CAS  PubMed  Google Scholar 

  16. Brandt JE, Batholomew AM, Fortman JD et al. Ex vivo expansion of autologous bone marrow CD34+ cells with porcine microvascular endothelial cells results in a graft capable of rescuing lethally irradiated baboons Blood 1999 94: 106–113

    CAS  PubMed  Google Scholar 

  17. Bennaceur-Griscelli A, Tourino C, Izac B et al. Murine stromal cells counteract the loss of long-term culture-initiating cell potential induced by cytokines in CD34+CD38low/neg human bone marrow cells Blood 1999 94: 529–538

    CAS  PubMed  Google Scholar 

  18. Fraser CC, Szilvassy SJ, Eaves CJ, Humphries RK . Proliferation of totipotent hematopoietic stem cells in vitro with retention of long-term competitive in vitro reconstituting ability Proc Natl Acad Sci USA 1992 89: 1968–1972

    Article  CAS  Google Scholar 

  19. Shih C-C, Hu MC-T, Hu J et al. Long-term ex vivo maintenance and expansion of transplantable human hematopoietic stem cells Blood 1999 94: 1623–1636

    CAS  PubMed  Google Scholar 

  20. Kawata H, Ando K, Tsuji T et al. Rapid ex vivo expansion of human umbilical cord hematopoietic progenitors using a novel culture system Exp Hematol 1999 27: 904–915

    Article  Google Scholar 

  21. Itoh K, Tezuka H, Sakoda H et al. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow Exp Hematol 1989 17: 145–153

    CAS  PubMed  Google Scholar 

  22. Issaad C, Croisille L, Katz A et al. A murine stromal cell line allows the proliferation of very primitive human CD34++CD38 progenitor cells in long-term cultures and semisolid assays Blood 1993 81: 2916–2924

    CAS  PubMed  Google Scholar 

  23. Berardi AC, Meffre E, Pflumio F et al. Individual CD34+CD38lowCD19CD10 progenitor cells from human cord blood generate B lymphocytes and granulocytes Blood 1997 89: 3554–3564

    CAS  PubMed  Google Scholar 

  24. Nishihara M, Wada Y, Ogami K et al. A combination of stem cell factor enhances the growth of human progenitor B cells supported by murine stromal cell line MS-5 Eur J Immunol 1998 28: 855–864

    Article  CAS  Google Scholar 

  25. Ohkawara JI, Ikebuchi K, Fujihara M et al. Culture system for extensive production of CD19+IgM+ cells by human cord blood CD34+ progenitors Leukemia 1998 12: 764–771

    Article  CAS  Google Scholar 

  26. Bennaceur-Griscelli A, Tourino C, Izac B et al. Murine stromal cells counteract the loss of long-term culture-initiating cell potential induced by cytokines in CD34(+)CD38(low/neg) human bone marrow cells Blood 1999 94: 529–538

    CAS  PubMed  Google Scholar 

  27. Dexter TM, Allen TD, Lajtha LG . Conditions controlling the proliferation of haemopoietic stem cells in vitro J Cell Physiol 1977 91: 335–344

    Article  CAS  Google Scholar 

  28. Koyanagi Y, Tanaka Y, Kira J et al. Primary human immunodeficiency virus type 1 viremia and central nervous system invasion in a novel hu-PBL-immunodeficient mouse strain J Virol 1997 71: 2417–2424

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ueda T, Yoshino H, Kobatashi K et al. Hematopoietic repopulating ability of cord blood CD34+ cells in NOD/Shi-scid mice Stem Cells 2000 18: 204–213

    Article  CAS  Google Scholar 

  30. Shultz LD, Schweitzer PA, Christianson SW et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice J Immunol 1995 154: 180–191

    CAS  PubMed  Google Scholar 

  31. Ramirez M, Rottman GA, Shultz LD, Civin CI . Mature human hematopoietic cells in donor bone marrow complicate interpretation of stem/progenitor cell assays in xenogeneic hematopoietic chimeras Exp Hematol 1998 26: 332–344

    CAS  PubMed  Google Scholar 

  32. Williams DA, Rios M, Stephens C, Patel VP . Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions Nature 1991 352: 438–441

    Article  CAS  Google Scholar 

  33. Miyake K, Hasunuma Y, Yagita H, Kimoto M . Requirement for VLA-4 and VLA-5 integrins in lymphoma cells binding to and migration beneath stromal cells in culture J Cell Biol 1992 119: 653–662

    Article  CAS  Google Scholar 

  34. Papayannopoulou T, Nakamoto B . Peripheralization of hematopoietic progenitors in primates treated with anti-VLA-4 integrin Proc Natl Acad Sci USA 1993 90: 9374–9378

    Article  CAS  Google Scholar 

  35. Leavesley DI, Oliver JM, Swart BW et al. Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of the very late antigen-4 integrin of human CD34+ hemopoietic progenitor cells J Immunol 1994 153: 4673–4683

    CAS  PubMed  Google Scholar 

  36. Papayannopoulou T, Craddock C, Nakamoto B et al. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen Proc Natl Acad Sci USA 1995 92: 9647–9651

    Article  CAS  Google Scholar 

  37. Hirsch E, Iglesias A, Potocnik AJ et al. Impaired migration but not differentiation of hematopoietic stem cells in the absence of beta 1 integrins Nature 1996 380: 171–175

    Article  CAS  Google Scholar 

  38. Yamaguchi M, Ikebuchi K, Hirayama F et al. Different adhesive characteristics and VLA-4 expression of CD34+ progenitors in G0/G1 versus S+G2/M phases of the cell cycle Blood 1998 92: 842–848

    CAS  PubMed  Google Scholar 

  39. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling. Cell fate control and signal integration in development Science 1999 284: 770–776

    Article  CAS  Google Scholar 

  40. Milner LA, Bigas A . Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation Blood 1999 93: 2431–2448

    CAS  PubMed  Google Scholar 

  41. Moore KA, Pytowski B, Witte L et al. Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs Proc Natl Acad Sci USA 1997 94: 4011–4016

    Article  CAS  Google Scholar 

  42. Varnum-Finney B, Purton LE, Yu M et al. The Notch ligand, Jagged1, influences the development of primitive hematopoietic precursor cells Blood 1998 91: 4084–4091

    CAS  PubMed  Google Scholar 

  43. Jones P, May G, Healy L et al. Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells Blood 1998 92: 1505–1511

    CAS  PubMed  Google Scholar 

  44. Milner LA, Kopan R, Martin DI, Bernstein ID . A human homolog of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors Blood 1994 83: 2057–2062

    CAS  PubMed  Google Scholar 

  45. Tordjman R, Ortega N, Coulombel L et al. Neuropilin-1 is expressed on bone marrow stromal cells: a novel interaction with hematopoietic cells? Blood 1999 94: 2301–2309

    CAS  PubMed  Google Scholar 

  46. Larochelle A, Vormoor J, Hanenberg H et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy Nature Med 1996 2: 1329–1337

    Article  CAS  Google Scholar 

  47. Aiuti A, Webb IJ, Bleul C et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood J Exp Med 1997 185: 111–120

    Article  CAS  Google Scholar 

  48. Peled A, Petit I, Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science 1999 283: 845–848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanai, M., Hirayama, F., Yamaguchi, M. et al. Stromal cell-dependent ex vivo expansion of human cord blood progenitors and augmentation of transplantable stem cell activity. Bone Marrow Transplant 26, 837–844 (2000). https://doi.org/10.1038/sj.bmt.1702634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1702634

Keywords

Search

Quick links