Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited

Abstract

Various hypotheses have been proposed to explain why cytomegalovirus pneumonitis (CMV-P) is frequent and severe in bone marrow transplant patients while remaining rare and mild in HIV infected patients. One hypothesis suggests that CMV-P is an immunopathological condition that is common in bone marrow transplantation (BMT) under the effects of an abnormally regenerating immune system that reacts against CMV infected lung tissue. Such a hypothesis implicates CD4 T lymphocytes as one of the critical cell populations involved in immunopathology and also suggests that this process would be aborted by CD4 T cell deficiency in HIV infection. However, studies correlating the onset of CMV-P with lymphocyte reconstitution following BMT have revealed that CD4 cells are present at very low frequencies in the blood during the early period after transplantation when most cases of CMV-P occur. Furthermore, studies directly investigating bronchoalveolar lavage cell types during episodes of CMV-P in BMT patients have also failed to demonstrate significant CD4 involvement and, instead, have emphasized a predominance of natural killer (NK) cells and CD8 cells. These findings serve as the basis for questioning the validity of a CD4-driven immunopathological model of CMV-P in BMT. On the other hand, a variety of experimental and clinical observations support the protective role of CMV-specific CD3+ CD8 T lymphocytes against CMV in both immunocompetent individuals and BMT patients. In a murine BMT model, adoptive transfer of syngeneic BM cells was associated with massive increases in lung CD8 cells which resulted in the resolution rather than the exacerbation of existing CMV-P. In the light of these findings a more plausible hypothesis for CMV-P in BMT is that during the early period after transplantation adequate protective CD8 responses are absent and an uncontrolled CMV proliferation is allowed to develop. Once a critical viral load is reached a cytokine ‘storm’ may be triggered in the lung tissue that aggravates direct CMV-associated cytopathic effects. Likely candidates for this process would include the release of tumour necrosis factor-alpha (TNF-α) from alveolar macrophages stimulated by interferon-gamma (IFN-γ) released from NK cells that are reconstituted early after BMT. Bone Marrow Transplantation (2000) 26, 591–597.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Grundy JE, Shanley JD, Griffiths PD . Is cytomegalovirus interstitial pneumonitis in transplant recipients an immunopathological condition? Lancet 1987 2: 996–999

    Article  CAS  PubMed  Google Scholar 

  2. Reddehase MJ, Weiland F, Munch K et al. Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs J Virol 1985 55: 264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quinnan GV Jr, Kirmani N, Rook AH et al. Cytotoxic T cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients New Engl J Med 1982 307: 7–13

    Article  PubMed  Google Scholar 

  4. Reusser P, Riddell SR, Meyers JD et al. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease Blood 1991 78: 1373–1380

    Article  CAS  PubMed  Google Scholar 

  5. Grundy JE, Shanley JD, Shearer GM . Augmentation of graft-versus-host reaction by cytomegalovirus infection resulting in interstitial pneumonitis Transplantation 1985 39: 548–553

    Article  CAS  PubMed  Google Scholar 

  6. Shanley JD, Via CS, Sharrow SO et al. Interstitial pneumonitis during murine cytomegalovirus infection and graft-versus-host reaction. Characterization of bronchoalveolar lavage cells Transplantation 1987 44: 658–662

    Article  CAS  PubMed  Google Scholar 

  7. Shepp DH, Dandliker PS, de Miranda P et al. Activity of 9-[2-hydroxy-1-(hydroxymethyl)ethoxymethyl]guanine in the treatment of cytomegalovirus pneumonia Ann Intern Med 1985 103: 368–373

    Article  CAS  PubMed  Google Scholar 

  8. Papazian L, Thomas P, Bregeon F et al. Open-lung biopsy in patients with acute respiratory distress syndrome Anesthesiology 1998 88: 935–944

    Article  CAS  PubMed  Google Scholar 

  9. Gor D, Sabin C, Prentice HG et al. Longitudinal fluctuations in cytomegalovirus load in bone marrow transplant patients: relationship between peak virus load, donor/recipient serostatus, acute GVHD and CMV disease Bone Marrow Transplant 1998 21: 597–605

    Article  CAS  PubMed  Google Scholar 

  10. Steffens HP, Kurz S, Holtappels R et al. Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence J Virol 1998 72: 1797–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holtappels R, Podlech J, Geginat G et al. Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate–early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates J Virol 1998 72: 7201–7212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Podlech J, Holtappels R, Wirtz N et al. Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation J Gen Virol 1998 79: 2099–2104

    Article  CAS  PubMed  Google Scholar 

  13. Walter EA, Greenberg PD, Gilbert MJ et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor (see comments) New Engl J Med 1995 333: 1038–1044

    Article  CAS  PubMed  Google Scholar 

  14. Witt V, Fritsch G, Peters C et al. Resolution of early cytomegalovirus (CMV) infection after leukocyte transfusion therapy from a CMV seropositive donor Bone Marrow Transplant 1998 22: 289–292

    Article  CAS  PubMed  Google Scholar 

  15. Numazaki K, Ikehata M, Yanai S et al. Adoptive immunotherapy for interstitial pneumonia associated with cytomegalovirus infection Clin Infect Dis 1997 25: 1246–1247

    Article  CAS  PubMed  Google Scholar 

  16. Zeevi A, Morel P, Spichty K et al. Clinical significance of CMV-specific T helper responses in lung transplant recipients Hum Immunol 1998 59: 768–775

    Article  CAS  PubMed  Google Scholar 

  17. Einsele H, Bokemayer C, Kanz L et al. Cytomegalovirus infection following haematopoietic stem cell transplantation. In: Scholz M, Doerr HW, Cinatl J Jr (eds) CMV-Related Immunopathology Vol. 21: Karger: Basel 1998 pp106–118

    Google Scholar 

  18. Meyers JD, Flournoy N, Thomas ED . Risk factors for cytomegalovirus infection after human marrow transplantation J Infect Dis 1986 153: 478–488

    Article  CAS  PubMed  Google Scholar 

  19. Couriel D, Canosa J, Engler H et al. Early reactivation of cytomegalovirus and high risk of interstitial pneumonitis following T-depleted BMT for adults with hematological malignancies Bone Marrow Transplant 1996 18: 347–353

    CAS  PubMed  Google Scholar 

  20. Mackall CL, Gress RE . Thymic aging and T-cell regeneration Immunol Rev 1997 160: 91–102

    Article  CAS  PubMed  Google Scholar 

  21. Atkinson K . Reconstruction of the haemopoietic and immune systems after marrow transplantation Bone Marrow Transplant 1990 5: 209–226

    CAS  PubMed  Google Scholar 

  22. Mavroudis D, Read E, Cottler-Fox M et al. CD34+ cell dose predicts survival, posttransplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies Blood 1996 88: 3223–3229

    Article  CAS  PubMed  Google Scholar 

  23. Lowdell MW, Craston R, Ray N et al. The effect of T cell depletion with Campath-1M on immune reconstitution after chemotherapy and allogeneic bone marrow transplant as treatment for leukaemia Bone Marrow Transplant 1998 21: 679–686

    Article  CAS  PubMed  Google Scholar 

  24. Mackall CL, Hakim FT, Gress RE . Restoration of T-cell homeostasis after T-cell depletion Semin Immunol 1997 9: 339–346

    Article  CAS  PubMed  Google Scholar 

  25. Janossy G, Prentice HG, Grob JP et al. T lymphocyte regeneration after transplantation of T cell depleted allogeneic bone marrow Clin Exp Immunol 1986 63: 577–586

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lamb LS Jr, Gee AP, Henslee-Downey PJ et al. Phenotypic and functional reconstitution of peripheral blood lymphocytes following T cell-depleted bone marrow transplantation from partially mismatched related donors Bone Marrow Transplant 1998 21: 461–471

    Article  PubMed  Google Scholar 

  27. Small TN, Papadopoulos EB, Boulad F et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions Blood 1999 93: 467–480

    Article  CAS  PubMed  Google Scholar 

  28. Velardi A, Varese P, Terenzi A et al. Lymphokine production by T-cell clones after human bone marrow transplantation Blood 1989 74: 1665–1672

    Article  CAS  PubMed  Google Scholar 

  29. Keever CA, Small TN, Flomenberg N et al. Immune reconstitution following bone marrow transplantation: comparison of recipients of T-cell depleted marrow with recipients of conventional marrow grafts Blood 1989 73: 1340–1350

    Article  CAS  PubMed  Google Scholar 

  30. Hertenstein B, Hampl W, Bunjes D et al. In vivo/ex vivo T cell depletion for GVHD prophylaxis influences onset and course of active cytomegalovirus infection and disease after BMT Bone Marrow Transplant 1995 15: 387–393

    CAS  PubMed  Google Scholar 

  31. Applebaum FR, Meyers JD, Fefer A et al. Nonbacterial nonfungal pneumonia following marrow transplantation in 100 identical twins Transplantation 1982 33: 265–268

    Article  CAS  PubMed  Google Scholar 

  32. Noel DR, Witherspoon RP, Storb R et al. Does graft-versus-host disease influence the tempo of immunologic recovery after allogeneic human marrow transplantation? An observation on 56 long-term survivors Blood 1978 51: 1087–1105

    Article  CAS  PubMed  Google Scholar 

  33. Hoyle C, Goldman JM . Life-threatening infections occurring more than 3 months after BMT. 18 UK Bone Marrow Transplant Teams Bone Marrow Transplant 1994 14: 247–252

    CAS  PubMed  Google Scholar 

  34. Ochs L, Shu XO, Miller J et al. Late infections after allogeneic bone marrow transplantations: comparison of incidence in related and unrelated donor transplant recipients Blood 1995 86: 3979–3986

    Article  CAS  PubMed  Google Scholar 

  35. Reusser P, Attenhofer R, Hebart H et al. Cytomegalovirus-specific T-cell immunity in recipients of autologous peripheral blood stem cell or bone marrow transplants Blood 1997 89: 3873–3879

    Article  CAS  PubMed  Google Scholar 

  36. Milburn HJ, Poulter LW, Prentice HG et al. Pulmonary cell populations in recipients of bone marrow transplants with interstitial pneumonitis Thorax 1989 44: 570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beverley PC, Callard RE . Distinctive functional characteristics of human T lymphocytes defined by E rosetting or a monoclonal anti-T cell antibody Eur J Immunol 1981 11: 329–334

    Article  CAS  PubMed  Google Scholar 

  38. Escudier E, Fleury J, Cordonnier C et al. Large granular lymphocytes in bronchoalveolar lavage fluids from immunocompromised patients with cytomegalovirus pneumonitis Am J Clin Pathol 1986 86: 641–645

    Article  CAS  PubMed  Google Scholar 

  39. Bowden RA, Dobbs S, Kopecky KJ et al. Increased cytotoxicity against cytomegalovirus-infected target cells by bronchoalveolar lavage cells from bone marrow transplant recipients with cytomegalovirus pneumonia J Infect Dis 1988 158: 773–779

    Article  CAS  PubMed  Google Scholar 

  40. Sparrelid E, Emanuel D, Fehniger T et al. Interstitial pneumonitis in bone marrow transplant recipients is associated with local production of TH2-type cytokines and lack of T cell-mediated cytotoxicity Transplantation 1997 63: 1782–1789

    Article  CAS  PubMed  Google Scholar 

  41. Pilkington GR, Hancock WW, Hunter S et al. Monoclonal anti-T-cell antibodies react with circulating myeloid leukemia cells and normal tissue macrophages Pathology 1984 16: 447–454

    Article  CAS  PubMed  Google Scholar 

  42. Wallace JM, Hannah J . Cytomegalovirus pneumonitis in patients with AIDS. Findings in an autopsy series Chest 1987 92: 198–203

    Article  CAS  PubMed  Google Scholar 

  43. d'Arminio Monforte A, Mainini F, Testa L et al. Predictors of cytomegalovirus disease, natural history and autopsy findings in a cohort of patients with AIDS Aids 1997 11: 517–524

    Article  CAS  PubMed  Google Scholar 

  44. Millar AB, Patou G, Miller RF et al. Cytomegalovirus in the lungs of patients with AIDS. Respiratory pathogen or passenger? Am Rev Respir Dis 1990 141: 1474–1477

    Article  CAS  PubMed  Google Scholar 

  45. Squire SB, Lipman MC, Bagdades EK et al. Severe cytomegalovirus pneumonitis in HIV infected patients with higher than average CD4 counts Thorax 1992 47: 301–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aukrust P, Farstad IN, Froland SS et al. Cytomegalovirus (CMV) pneumonitis in AIDS patients: the result of intensive CMV replication? Eur Respir J 1992 5: 362–364

    CAS  PubMed  Google Scholar 

  47. Autran B, Carcelain G, Li TS et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease (see comments) Science 1997 277: 112–116

    Article  CAS  PubMed  Google Scholar 

  48. Komanduri KV, Viswanathan MN, Wieder ED et al. Restoration of cytomegalovirus-specific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1 Nature Med 1998 4: 953–956

    Article  CAS  PubMed  Google Scholar 

  49. Narita M, Ashkin D, Hollender ES et al. Paradoxical worsening of tuberculosis following antiretroviral therapy in patients with AIDS Am J Respir Crit Care Med 1998 158: 157–161

    Article  CAS  PubMed  Google Scholar 

  50. Chien JW, Johnson JL . Paradoxical reactions in HIV and pulmonary TB Chest 1998 114: 933–936

    Article  CAS  PubMed  Google Scholar 

  51. Fishman JE, Saraf-Lavi E, Narita M et al. Pulmonary tuberculosis in AIDS patients: transient chest radiographic worsening after initiation of antiretroviral therapy Am J Roentgenol 2000 174: 43–49

    Article  CAS  Google Scholar 

  52. Race EM, Adelson-Mitty J, Kriegel GR et al. Focal mycobacterial lymphadenitis following initiation of protease-inhibitor therapy in patients with advanced HIV-1 disease (see comments) Lancet 1998 351: 252–255

    Article  CAS  PubMed  Google Scholar 

  53. Phillips P, Kwiatkowski MB, Copland M et al. Mycobacterial lymphadenitis associated with the initiation of combination antiretroviral therapy J Acquir Immune Defic Syndr Hum Retrovirol 1999 20: 122–128

    Article  CAS  PubMed  Google Scholar 

  54. Zegans ME, Walton RC, Holland GN et al. Transient vitreous inflammatory reactions associated with combination antiretroviral therapy in patients with AIDS and cytomegalovirus retinitis (see comments) Am J Ophthalmol 1998 125: 292–300

    Article  CAS  PubMed  Google Scholar 

  55. Callan MF, Tan L, Annels N et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus in vivo J Exp Med 1998 187: 1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ogg GS, Jin X, Bonhoeffer S et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA Science 1998 279: 2103–2106

    Article  CAS  PubMed  Google Scholar 

  57. Maino VC, Picker LJ . Identification of functional subsets by flow cytometry: intracellular detection of cytokine expression Cytometry 1998 34: 207–215

    Article  CAS  PubMed  Google Scholar 

  58. Nokta MA, Hassan MI, Loesch K et al. Human cytomegalovirus-induced immunosuppression. Relationship to tumor necrosis factor-dependent release of arachidonic acid and prostaglandin E2 in human monocytes J Clin Invest 1996 97: 2635–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Geist LJ, Monick MM, Stinski MF et al. The immediate early genes of human cytomegalovirus upregulate tumor necrosis factor-alpha gene expression J Clin Invest 1994 93: 474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Profs HG Prentice, MJ Reddehase, A Madrigal and P Griffiths and Dr J Grundy for help and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, S., Johnson, M. & Janossy, G. Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited. Bone Marrow Transplant 26, 591–597 (2000). https://doi.org/10.1038/sj.bmt.1702562

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1702562

Keywords

This article is cited by

Search

Quick links