Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Secondary V(D)J recombination in B-1 cells

Abstract

B-1 B cells are a self-renewing population of B cells that differ from conventional B cells (B-2 cells) in that they are particularly predisposed to auto-antibody production1,2,3. Although much is known about the signalling pathways that control B-1-cell growth and development (reviewed in ref. 4), less is known about why these cells are prone to produce autoreactive antibodies. Here we show that B-1 cells, like germinal-centre B cells5,6,7,8, can express recombinase-activating genes 1 and 2 (RAG1 and RAG2) and undergo secondary V(D)J recombination of immunoglobulin genes. In addition, B cells from autoimmune-prone NZB mice show high levels of RAG messenger RNA and recombination. We propose that secondary immunoglobulin-gene rearrangements outside organized lymphoid organs may contribute to the development of autoreactive antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of expression of the Ac146 idiotype on peritoneal B cells.
Figure 2: Loss of idiotype expression is dependent on V(D)J recombination.
Figure 3: Secondary V(D)J-recombination activity in peritoneal B cells.
Figure 4: Absence of B-1 cells in B1-8Hi+/−3-83κi+/−Ku80−/− mice.
Figure 5: Increased expression of RAG1 and RAG2 and secondary V(D)J-recombination activity in peritonea.

Similar content being viewed by others

References

  1. Hayakawa, K., Hardy, R. R., Parks, D. R. & Herzenberg, L. A. The “Ly-1 B” cell subpopulation in normal immunodefective, and autoimmune mice. J. Exp. Med. 157, 202–218 (1983).

    Article  CAS  Google Scholar 

  2. Hayakawa, K. et al. Ly-1 B cells: functionally distinct lymphocytes that secrete IgM autoantibodies. Proc. Natl Acad. Sci. USA 81, 2494–2498 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Hayakawa, K., Hardy, R. R., Herzenberg, L. A. & Herzenberg, L. A. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J. Exp. Med. 161, 1554–1568 (1985).

    Article  CAS  Google Scholar 

  4. Tarakhovsky, A. Bar Mitzvah for B-1 cells: how will they grow up? J. Exp. Med. 185, 981–984 (1997).

    Article  CAS  Google Scholar 

  5. Hikida, M. et al. Reexpression of RAG-1 and RAG-2 genes in activated mature mouse B cells. Science 274, 2092–2094 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094–2097 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Papavasiliou, F. et al. V(D)J recombination in mature B cells: a new mechanism for diversification of antibody responses. Science 278, 298–301 (1997).

    Article  CAS  Google Scholar 

  8. Han, S. et al. V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science 278, 301–305 (1997).

    Article  CAS  Google Scholar 

  9. Pelanda, R., Schaal, S., Torres, R. M. & Rajewsky, K. Aprematurely expressed Ig(kappa) transgene, but not V(kappa)J(kappa) gene segment targeted into the Ig(kappa) locus, can rescue B cell development in lambda5-deficient mice. Immunity 5, 229–239 (1996).

    Article  CAS  Google Scholar 

  10. Sonoda, E. et al. Bcell development under the condition of allelic inclusion. Immunity 6, 225–233 (1997).

    Article  CAS  Google Scholar 

  11. Pelanda, R. et al. Receptor editing in a transgenic mouse model: site efficiency and role in B cell tolerance and antibody diversification. Immunity 7, 765–777 (1997).

    Article  CAS  Google Scholar 

  12. Stall, A. M. et al. Rearrangement and expression of endogenous immunoglobulin genes occur in many murine B cells expressing transgenic membrane IgM. Proc. Natl Acad. Sci. USA 85, 3546–3550 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Taki, S., Meiering, M. & Rajewsky, K. Targeted insertion of a variable region gene into the immunoglobulin heavy chain locus. Science 262, 1268–1271 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Cascalho, M., Wong, J. & Wabl, M. VHgene replacement in hyperselected B cells of the quasimonoclonal mouse. J. Immunol. 159, 5795–5801 (1997).

    CAS  PubMed  Google Scholar 

  15. Spanopoulou, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).

    Article  CAS  Google Scholar 

  16. Taccioli, G. E. et al. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265, 1442–1445 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Nussenzweig, A. et al. Requirement for Ku80 in growth and V(D)J recombination. Nature 382, 551–555 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Murakami, M. et al. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse. J. Exp. Med. 180, 111–121 (1994).

    Article  CAS  Google Scholar 

  19. Arnold, L. W., Pennell, C. A., McCray, S. K. & Clarke, S. H. Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J. Exp. Med. 179, 1585–1595 (1994).

    Article  CAS  Google Scholar 

  20. Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  Google Scholar 

  21. Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 (1993).

    Article  CAS  Google Scholar 

  22. Nemazee, D. A. & Bürki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Goodnow, C. C., Crosbie, J., Jorgensen, H., Brink, R. A. & Basten, A. Induction of self-tolerance in mature peripheral B lymphocytes. Nature 342, 385–391 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Murakami, M. et al. Antigen-induced apoptotic death of Ly-1 B cells responsible for autoimmune disease in transgenic mice. Nature 357, 77–80 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Pulendran, B., Kannourakis, G., Nouri, S., Smith, K. G. & Nossal, G. J. Soluble antigen can cause enhanced apoptosis of germinal centre B cells. Nature 375, 331–334 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Shokat, K. M. & Goodnow, C. C. Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 375, 334–338 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Lalor, P. A., Stall, A. M., Adams, S. & Herzenberg, L. A. Permanent alteration of the murine Ly-1 B repertoire due to selective depletion of Ly-1 B cells in neonatal animals. Eur. J. Immunol. 19, 501–506 (1989).

    Article  CAS  Google Scholar 

  28. Tsubata, T., Murakami, M. & Honjo, T. Antigen-receptor cross-linking induces peritoneal B-cell apoptosis in normal but not autoimmunity-prone mice. Curr. Biol. 4, 8–17 (1994).

    Article  CAS  Google Scholar 

  29. Murakami, M. et al. Effects of breeding environments on generation and activation of autoreactive B-1 cells in anti-red blood cell autoantibody transgenic mice. J. Exp. Med. 185, 791–794 (1997).

    Article  CAS  Google Scholar 

  30. Ehlich, A., Martin, V., Muller, W. & Rajewsky, K. Analysis of the B-cell progenitor compartment at the level of single cells. Curr. Biol. 4, 573–583 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Nussenzweig lab for comments on the manuscript and helpful discussions. This work was supported by grants from the NIH (to M.C.N.) and the Deutsche Forschungsgemeinschaft (through SFB243) and the EU (to K.R.). X-F.Q. was supported by an RU graduate fellowship and NIH training grant. A.N. was supported in part by a grant from the Arthritis Foundation. M.C.N. is an associate investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel C. Nussenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, XF., Schwers, S., Yu, W. et al. Secondary V(D)J recombination in B-1 cells. Nature 397, 355–359 (1999). https://doi.org/10.1038/16933

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16933

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing