

We now have evidence that layers thinner than one unit cell are formed in certain circumstances.

The photograph reproduced herewith shows a growth pattern on a $c(0001)$ face of a carborundum crystal. The technique of observation was the same as the one used previously. By means of Weissenberg photographs about an α-axis, we found the crystal to be of the type $6 H$ (formerly type II) ${ }^{4}$. The structure of this type of carborundum can be considered as being made up of superimposed threelayered lamellæ, each lamella rotated 180° to that immediately below it ${ }^{5}$. The unit cell contains two such lamellæ, and each of them has trigonal symmetry about the c-axis.

The accompanying photograph shows a double growth-spiral. The two components are generated by the same dislocation end; both have trigonal symmetry as shown by their radial growth-velocity, but their orientation differs by 180°. This shows that two successive sheets are not equivalent.

The average height of a step between successive loops of the spiral was measured by means of multiple beam interferometry ${ }^{6}$ and found to be 7 ± 2 A., that is, the height of one three-layered lamella (or half a unit cell).

The most logical interpretation of this pattern would appear to be that these two spirals are due to the growth of each lamella separately. Consequently carborundum crystals (of type $6 H$) seem to grow, at least in certain circumstances, not by unit cells but by three-layered lamellæ. Probably similar conclusions will hold for the growth of the other types of silicon carbide; they could provide a basis for the explanation of the existence of the numerous types of carborundum which are known.

A more detailed account of this work is being published elsewhere.

I am grateful to Prof. W. Dekeyser for continuous interest and encouragement. This work is part of a research scheme supported by the Centre National Belge de Chimie Physique Moléculaire, to which I am indebted for a research fellowship. The carborundum samples were kindly provided by S.E.C.E.M.A.E.U. (Usine de la Bathie, France).
S. Amelincex

Crystallographic Laboratory, Geological Institute,
University of Ghent. July 15.
${ }^{1}$ Frank, F. C., Farad. Soc. Discuss. Crystal Growth, No. 5 (1949).
${ }^{2}$ Ajit Ram Verma, Nature, 167, 939 (1951).
${ }^{3}$ Amelinckx, S., Nature, 167, 940 (1951).
${ }^{4}$ Ramsdell, L. S., Amer. Min., 32, 64 (1947).
${ }^{5}$ Lundquist, D., Acta Chem. Scand., 2, 177 (1948).
"Tolansky, S. "Multiple Beam Interferometry of Surfaces and Films" (Oxford Üniv. Press, 1948).

Crystal Structure of Ergine

Ergine, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ON}_{3}$, the amide of lysergic acid, is the simplest of the ergot alkaloids. It forms salts with hydrochloric and hydrobromic acids, and crystals of these were kindly put at our disposal by Prof. A. Stoll, of Basle. Both salts crystallize in elongated colourless plates, which are optically

