Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling the shape of a quantum wavefunction

Abstract

The ability to control the shape and motion of quantum states1,2 may lead to methods for bond-selective chemistry and novel quantum technologies, such as quantum computing. The classical coherence of laser light has been used to guide quantum systems into desired target states through interfering pathways3,4,5. These experiments used the control of target properties — such as fluorescence from a dye solution6, the current in a semiconductor7,8 or the dissociation fraction of an excited molecule9 — to infer control over the quantum state. Here we report a direct approach to coherent quantum control that allows us to actively manipulate the shape of an atomic electron's radial wavefunction. We use a computer-controlled laser to excite a coherent state in atomic caesium. The shape of the wavefunction is then measured10 and the information fed back into the laser control system, which reprograms the optical field. The process is iterated until the measured shape of the wavefunction matches that of a target wavepacket, established at the start of the experiment. We find that, using a variation of quantum holography11 to reconstruct the measured wavefunction, the quantum state can be reshaped to match the target within two iterations of the feedback loop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic Rydberg wavefunctions reconstructed from measured projections.

Similar content being viewed by others

References

  1. Warren, W. S., Rabitz, H. & Dahleh, M. Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Gordon, R. J. & Rice, S. A. Active control of the dynamics of atoms and molecules. Annu. Rev. Phys. Chem. 48, 601–641 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Tannor, D. J. & Rice, S. A. Coherent pulse sequence control of product formation in chemical-reactions. Adv. Chem. Phys. 70, 441–523 (1998).

    Google Scholar 

  4. Shapiro, M. & Brumer, P. Coherent and incoherent laser control of photochemical-reactions. Int. Rev. Phys. Chem. 13, 187–229 (1994).

    Article  CAS  Google Scholar 

  5. Judson, R. S. & Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Bardeen, C. J. et al. Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280, 151–158 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Dupont, E., Corkum, P. B., Liu, H. C., Buchanan, M. & Wasilewski, Z. R. Phase-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596–2599 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Hache, A. et al. Observation of coherently controlled photocurrent in unbiased, bulk GaAs. Phys. Rev. Lett. 78, 306–309 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Kleiman, V., Zhu, L., Li, X. & Gordon, R. J. Coherent phase control of the photoionization of H2S. J.Chem. Phys. 102, 5863–5866 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Weinacht, T. C., Ahn, J. & Bucksbaum, P. H. Measurement of the amplitude and phase of a sculpted Rydberg wave packet. Phys. Rev. Lett. 80, 5508–5511 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Leichtle, C., Schleich, W. P., Averbukh, I. S. & Shapiro, M. Quantum state holography. Phys. Rev. Lett. 80, 1418–1421 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Xin, C. & Yeazell, J. A. Analytical wave-packet design scheme: control of dynamics and creation of exotic wave packets. Phys. Rev. A 56, R2274–R2277 (1997).

    Google Scholar 

  13. Fittinghoff, D. N. et al. Measurement of the intensity and phase of ultraweak, ultrashort laser pulses. Opt. Lett. 21, 884–886 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Gallagher, T. F., Humphrey, L. M., Cooke, W. E., Hill, R. M. & Edelstein, S. A. Field ionization of highly excited states of sodium. Phys. Rev. A 16, 1098–1108 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Kinrot, O., Averbukh, I. S. & Prior, Y. Measuring coherence while observing noise. Phys. Rev. Lett. 75, 3822–3825 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Hanbury-Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 175, 27–29 (1956).

    Article  Google Scholar 

  17. Schleich, W. & Raymer, M. Quantum state preparation and measurement. J. Mod. Opt. 44, 2021–2022 (1997).

    Article  ADS  Google Scholar 

  18. Freyberger, M., Bardroff, P., Leichtle, C., Schrade, G. & Schleich, W. The art of measuring quantum states. Phys. World 10, 41–45 (1997).

    Article  CAS  Google Scholar 

  19. Leibfried, D., Pfau, T. & Monroe, C. Shadows and mirrors: reconstructing quantum states of atom motion. Phys. Today 51, 22–28 (1998).

    Article  Google Scholar 

  20. Leonhardt, U. Measuring the Quantum State of Light(Cambridge Univ. Press, (1997)).

    MATH  Google Scholar 

  21. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Tull, J. X., Dugan, M. A. & Warren, W. S. High resolution, ultrafast laser pulse shaping and its applications. Adv. Opt. Magn. Reson. 20, 1–51 (1996).

    Google Scholar 

  23. Raman, C., Conover, C. W. S., Sukenik, C. I. & Bucksbaum, P. H. Ionization of Rydberg wave packets by subpicosecond, half-cycle electromagnetic pulses. Phys. Rev. Lett. 76, 2436–2439 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Krause, J. L., Schafer, K. J., Ben-Nun, M. & Wilson, K. R. Creating and detecting shaped Rydberg wave packets. Phys. Rev. Lett. 79, 4978–4981 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Tannor, J. Krause and J. Cohen for discussions. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Weinacht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinacht, T., Ahn, J. & Bucksbaum, P. Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999). https://doi.org/10.1038/16654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16654

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing