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Nuclear Shell Structure and Nuclear 
Density 

THE existence of the shell structure of nuclei has 
been derived from a considerable variety of empirical 
facts (stability and abundance of nuclei, spin, mag­
netic moment, quadrupole moment, isomerism and 
~-decay)1. The closed shells of neutrons as well as 
of protons correspond to the numbers 2, 8, 20, 28, 
50, 82, 126. Several theories2 have been put forward, 
based on the model of a single nucleon moving in an 
average field of the rest. As it is not easy to conceive 
how a single particle embedded in matter of nuclear 
density could move in its own orbit without being 
disturbed by the others, we have searched for a more 
gen eral explanation•. This is obtained with the help 
of a well-known relation first derived by Fermi, 
connecting the density p(r) of a degenerate system 
of spin-half particles to the numbers of particles with 
angular momentum quantum number l. If one 
assumes that the formation of a closed shell is associ­
ated with the filling up of states .of definite angular 
momentum, it follows that the closed shells are 
characterized by 

[r3 p(r)]m,x = (2l + 1) 3/24rc 2
• 

Then calculations performed by the junior author 
show that the number of particles N(l) in the l-th 
shell is 

N(l) = f.(2l + 3)3
, 

where f is a quantity depending on the form of the 
density function F (r). One sees that the difference 
of the cubic roots of successive shells /!:,,(N 1 13 } is a 
constant; namely, 2j1I•. Now this is at once empirically 
confirmed by the shell numbers in heavy nuclei, as 
shown in the following table : 

N(l} 
{N(l)}1/a 
A(N1f•) 

28 50 
3·04 3·69 

0 ·65 0·66 

82 126 
4.35 5·01 

0·66 

One can now calculate theoretically the shell 
numbers for different d ensity distributions. The free 
Fermi-gas distribution gives too small a value of 
/!:,,(N1/ 3), equal to 0·52 instead of 0·66. However, a 
reasonable density distribution p(r}, constant in the 
interior and falling off like a Gaussian function near 
the border, namely, 

p(1} = Po for r ~Ro 7 

= Po exp{ - (r~R0
)'} for r > R0 J (l} 

gives excellent result for l ~ 3. The constants p0 , 

a and R 0 , determined uniquely by the empirical 
relation /!:,,(N 1 i3 ) = 0·66, are 

Po = · / -- ro , 1 04 / 4r. 3 } 

a = 0·327 : 0 A 1 13 , 

R 0 = 0 ·673 r 0 Al f• . 

(2} 

where r 0 is of the order of l ·5 x 10-13 cm. 
The shell numbers N(l} as calculated from (l} and 

(2} are tabulated in thfl following table : 

l 3 4 5 6 
N(l} 27·1 49·5 81·5 125·2 
Next integer 28 50 82 126 

For light nuclei, the central part of constant 
density no longer exists. When a purely Gaussian 
function is adopted for the nuclear d ensity, 

p(r) = p0 exp {-G)'}, with Po= 0 ·752/4; r 1
8,and 

a = 1'1 Alta, 

where r 1 is also of the order of . l ·5 x 10-13 cm. 
W e again obtain correctly the first three shell 

numbers: 

l 
N(l} 
Next integer 

0 
1·55 

2 

I 
7·16 

8 

2 
19·66 

20 

There must exist, of course , an intermediate region, 
presumably between 20 and 28, in which the transition 
takes place. Theoretical calculation of the nuclear 
density according to Dirac and Jensen's refinement 
of the Thomas-Fermi model of nuclei is now in 
preparation. 

Thu.s the shell structure, owing to 'its correlation 
with the nuclear density, throws light on the possible 
form of the latter. In particular, it turns out that the 
thickness of the surface layer, instead of being con­
stant and of the order of the · nuclear-force range, 
has to be proportional to A 1 I•. We further infer that 
the existence of a central part of almost constant 
d ensity is due to the effect of the Coulomb repulsion, 
without which the nuclear density would be nearly 
Gaussian for all nuclei. 

Detailed calculation will be published elsewhere by 
the junior author. 

• Note added in proof. After having finished this 
paper, we found that the problem has been tackled 
in a similar way by Iwanenko and Polyjew•, but 
with less ruccess ; the reason being that only ordinary 
forces of the Yukawa type are taken into account 
while actually exchange forces are predominant. 
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Microscopy by Reconstructed Wave-fronts 
THE principle of Dr. D. Gabor's interesting method 

of reconstructing images of objects from photographs 
of the interference patterns produced when the object 
is illuminated with a coherent monochromatic wave­
train is fully explained in his paper1 • The treatment 
in this note is essentially the same, but I have ventured 
to present it in a very simplified form because I have 
found in discussions that difficulty is sometimes 
experienced in forming a physical picture of the 
reconstruction of the image, when the photographic 
plate can only record intensities of light and not 
phases.· 

The object, 0 is placed close t o a point source of 
light S. The wavelets scattered by the object inter­
fere with the main waves from S over a surface sueµ 
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