LETTERS TO THE EDITORS

The Editors do not hold themselves responsible for opinions expressed by their correspondents.
No notice is taken of anonymous communications

Angular Correlation Between α-Particles and γ-Rays in the Reaction $\mathrm{F}^{19}(p, \alpha \gamma) \mathbf{O}^{16}$

We have studied the correlation between the directions of emission of alpha-particles and gammarays at the $340-\mathrm{keV}$. resonance in the following reaction :

$$
\mathrm{F}^{19}+p \rightarrow \mathrm{Ne}^{20 *} \rightarrow \mathrm{O}^{16 *}+\alpha \rightarrow \mathrm{O}^{16}+\gamma+\alpha
$$

Both alpha-particles and gamma-rays were observed in the plane perpendicular to the proton beam. The alpha-particles were detected in a proportional counter with a window sufficiently thick (approximately 6.5 mm . air equivalent) to exclude protons scattered from the calcium fluoride target. The $6 \cdot 1-\mathrm{MeV}$. gamma-rays emitted from the oxygen-16* nuclei were detected in a lead-walled Geiger counter. Coincidences between the alpha-particles and the gamma-rays were measured as a function of angle between the counters.
correlation function which is zero at $\theta=0^{\circ}$ and 180°. This conflicts directly with experiment as illustrated by curve C, which is drawn for $j=3$. It is therefore impossible to attribute the isotropy of the alpha-particles and gamma-radiation, mentioned above, to a $j=0$ level of neon-20. Two other feasible interpretations have been examined: (i) $J=1$, $j=4, l=3$; this gives curve D. (ii) $J=1, j=3$, $l=2,4$. Both components $l=2$ and 4 can be present without producing terms higher than $\cos ^{6} \theta$, and we must therefore consider the distribution produced by a coherent superposition of the $l=2$ and 4 components. By a suitable choice of amplitude and phase relationships between these two components we cen, in fact, produce a distribution function which agrees with experiment ; but this requires the contribution from $l=4$ to be at least half that from $l=2$, which is rather improbable.

We may therefore reasonably conclude that: (i) this resonance level of neon-20 is formed by $l=0$ protons, has $J=1$, and is probably of even parity because alpha-particle emission to the ground-state of oxygen-16 is not observed ${ }^{3}$; (ii) since the neon- 20^{*} has even parity and is formed by $l=0$ protons, fluorine-19 also has even parity; (iii) the neon-20* emits alpha-particles with $l=3$, leaving an excited oxygen-16 nucleus with $j=3$ and odd parity.

Even parity for the ground-state of fluorine-19, and an excited state of oxygen-16 with $J=3$, odd parity at $6 \cdot 1 \mathrm{MeV}$., are both compatible with the alpha-particle model of the nucleus. The even parity of fluorine-19 is also in agreement with the central field model, which gives for this nucleus the configuration ${ }^{4} S^{12} p^{3} d$. This model gives for the low excited states of oxygen-16 the configuration ${ }^{4} S^{11} p^{1} d$, which includes the possible terms ${ }^{3} D_{3}$, ${ }^{1} F_{3}$ and ${ }^{3} F_{3}$, all of the type $j=3$, odd parity.

A difficulty that arises from these results is the interpretation of the observed width and cross-section of this resonance-level in neon-20. Measurements ${ }^{4,5}$ indicate a combined width for alpha-particle and proton emission of $3 \cdot 2 \mathrm{keV}$., made up of one width of 40 eV . and the other of $3 \cdot 16 \mathrm{keV}$. The larger of these two widths (usually attributed to the alpha-particle) is difficult to reconcile with the small barrierpenetrability to be expected for either protons of such low energy or alpha-particles of such high angular momentum. This may indicate the inadequacy of some of the approximate methods used to calculate penetrability factors for particles of nonzero angular momentum ${ }^{6}$.
C. A. Barnes
A. P. French

Cavendish Laboratory, Cambridge.

S. Devons

Imperial College of Science and Technology,
London, S.W.7.

[^0]
[^0]: ${ }^{1}$ Van Allen, J. A., and Smith, N. M., Phys. Rev., 59, 501 (1941).
 ${ }^{2}$ Devons, S., and Hine, M. G. N., Proc. Roy. Soc., A, 199, 73 (1949).
 ${ }^{3}$ Streib, J. F., Fowler, W. A., and Lauritsen, C. C., Phys. Rev., 59, 253 (1941).

 - Fowler, W. A., and Lauritsen, C. C., Phys. Rev., 76, 314 (1949).
 ${ }^{5}$ Bonner, T. W., and Evans, J. E., Phys. Rev., 73, 666 (1948).
 ${ }^{8}$ Bethe, H. A., Rev. Mod. Phys., 9, 69 (1937).

