Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The thermal imprint of galaxy formation on X-ray clusters

Abstract

It is widely believed that structure in the Universe evolves hierarchically—fluctuations in the primordial distribution of matter, amplified by gravity, collapse and merge to form progressively larger systems, culminating in the clusters of galaxies that are observed today. But the observed structure and evolution of X-ray-emitting clusters of galaxies seems to be at odds with this picture1. In particular, clusters and groups with relatively few galaxies, as well as most distant clusters, are substantially fainter in X-rays than predicted by models of hierarchical formation. Here we show that these discrepancies arise because the entropy of the hot diffuse intracluster gas near the centre of the cluster is higher than can be explained by gravitational collapse alone. We argue that the excess entropy is a relic of the energetic winds generated by supernovae in the forming galaxies. These winds also enriched the intracluster medium with elements heavier than helium. We show that such a process can account for the observed effects only if the intracluster medium is heated at modest redshifts (z 2) but before the final collapse into a cluster structure, indicating that the formation of galaxies precedes that of clusters and that most clusters have been assembled very recently.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scaled X-ray surface-brightness profiles overlaid to show departures from similarity in galaxy systems of different temperatures.
Figure 2: The gas ‘entropy’ at a fiducial radius r = 01 rv as a function of temperature for the 25 systems in our sample.

Similar content being viewed by others

References

  1. Kaiser, N. Evolution of clusters of galaxies. Astrophys. J. 383, 104–111 (1991).

    Article  ADS  Google Scholar 

  2. Navarro, J. F., Frenk, C. S. & White, S. D. M. Simulations of X-ray clusters. Mon. Not. R. Astron. Soc. 275, 720–740 (1995).

    Article  ADS  Google Scholar 

  3. Navarro, J. F., Frenk, C. S. & White, S. D. M. Auniversal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

    Article  ADS  Google Scholar 

  4. White, D. A., Jones, C. & Forman, W. An investigation of cooling flows and general cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies. Mon. Not. R. Astron. Soc. 292, 419–467 (1997).

    Article  ADS  Google Scholar 

  5. David, L., Arnaud, K. A., Forman, W. & Jones, C. Einstein observations of the Hydra-A cluster and the efficiency of galaxy formation in groups and clusters. Astrophys. J. 356, 32–40 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Evrard, A. E. & Henry, J. P. Expectations for X-ray cluster observations by the ROSAT satellite. Astrophys. J. 383, 95–103 (1991).

    Article  ADS  Google Scholar 

  7. Jones, C. & Forman, W. The structure of clusters of galaxies observed with Einstein. Astrophys. J. 276, 38–55 (1984).

    Article  ADS  Google Scholar 

  8. David, L. P., Jones, C. & Forman, W. ROSAT PSPC observations of cool rich clusters. Astrophys. J. 473, 692–706 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Knight, P. A. & Ponman, T. J. The properties of the hot gas in galaxy groups and clusters from 1-D hydrodynamical simulations—I. Cosmological infall models. Mon. Not. R. Astron. Soc. 289, 955–972 (1997).

    Article  ADS  Google Scholar 

  10. Evrard, A. E. The intracluster gas fraction in X-ray clusters: constraints on the clustered mass density. Mon. Not. R. Astron. Soc. 292, 289–297 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Fukazawa, Y. et al. ASCA measurements of silicon and iron abundances in the intracluster medium. Publ. Astron. Soc. Jpn 50, 187–193 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Cavaliere, A., Menci, N. & Tozzi, P. The luminosity-temperature relation for groups and clusters of galaxies. Astrophys. J. 484, L21–L24 (1997).

    Article  ADS  Google Scholar 

  13. Metzler, C. A. & Evrard, A. E. Simulations of galaxy clusters with and without winds I.—the structure of clusters. Astrophys. J. (submitted); available as preprint astro-ph/9710324 at 〈http://xxx.lanl.gov〉 (1997).

  14. Watt, M. P. et al. The morphology and dark matter distribution of the Coma cluster of galaxies from X-ray observations. Mon. Not. R. Astron. Soc. 258, 738–748 (1992).

    Article  ADS  Google Scholar 

  15. Copi, C. J., Schramm, D. N. & Turner, M. S. Bing-Bang nucleosynthesis and the baryon density of the Universe. Science 267, 192–199 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Miralda-Escudé, J., Cen, R., Ostriker, J. P. & Rauch, M. The Lyman-alpha forest from gravitational collapse in the cold dark matter plus lambda model. Astrophys. J. 471, 582–616 (1996).

    Article  ADS  Google Scholar 

  17. Madau, P., Pozzetti, L. & Dickinson, M. The star formation history of field galaxies. Astrophys. J. 498, 106–116 (1998).

    Article  ADS  Google Scholar 

  18. Heckman, T. M., Armus, L. M. & Miley, G. K. On the nature and implications of starburst-driven galactic superwinds. Astrophys. J. Suppl. 74, 833–868 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Bower, R. G. Entropy-driven X-ray evolution of galaxy clusters. Mon. Not. R. Astron. Soc. 288, 355–364 (1997).

    Article  ADS  Google Scholar 

  20. Mushotzky, R. F. & Scharf, C. A. The luminosity-temperature relation at z = 0.4 for clusters of galaxies. Astrophys. J. 482, L13–L16 (1997).

    Article  ADS  Google Scholar 

  21. Arnaud, M. & Evrard, A. E. The LX− T relation and intracluster gas fractions of X-ray clusters. Mon. Not. R. Astron. Soc. (submitted); preprint available as astro-ph/9806353 at 〈http://xxx.lanl.gov〉 (1998).

  22. Cen, R. & Ostriker, J. P. Most of the ordinary matter in the Universe is in warm/hot gas. Science (submitted); preprint available as astro-ph/9806281 at 〈http://xxx.lanl.gov〉 (1998).

  23. Snowden, S. L., McCammon, D., Burrows, D. N. & Mendenhall, J. A. Analysis procedures for ROSAT XRT PSPC observations of extended objects and diffuse background. Astrophys. J. 424, 714–728 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Ponman, T. J., Bourner, P. D. J., Ebeling, H. & Böhringer, H. AROSAT survey of Hickson's compact galaxy groups. Mon. Not. R. Astron. Soc. 283, 690–708 (1996).

    Article  ADS  Google Scholar 

  25. Yamashita, K. in Frontiers of X-ray Astronomy (eds Tanaka, Y. & Koyama, K.) 475–480 (Universal Academy Press, Tokyo, (1992)).

    Google Scholar 

  26. Butcher, J. A. Extragalactic X-ray Astronomy with Ginga. Thesis, Univ. Leicester((1994)).

    Google Scholar 

  27. Mulchaey, J. S., Davis, D. S., Mushotzky, R. F. & Burstein, D. The intra-group medium in poor groups of galaxies. Astrophys. J. 456, 80–97 (1996).

    Article  ADS  Google Scholar 

  28. Ebeling, H., Mendes de Oliveira, C. & White, D. A. A2572 and HCG94—galaxy clusters but not as we know them: an X-ray case study of optical misclassifications. Mon. Not. R. Astron. Soc. 277, 1006–1032 (1995).

    Article  ADS  Google Scholar 

  29. Raymond, J. C. & Smith, B. W. Soft X-ray spectrum of a hot plasma. Astrophys. J. Suppl. 35, 419–439 (1977).

    Article  ADS  CAS  Google Scholar 

  30. Eke, V. R., Navarro, J. F. & Frenk, C. S. The evolution of X-ray clusters in low density universes. Astrophys. J. 503, 569–592 ((1998)).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Bower, S. White and P. Willmore for discussions. Data analysis was performed on the Starlink node at Birmingham. J.F.N. acknowledges the hospitality of the Max Planck Institut für Astrophysik in Garching during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor J. Ponman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponman, T., Cannon, D. & Navarro, J. The thermal imprint of galaxy formation on X-ray clusters. Nature 397, 135–137 (1999). https://doi.org/10.1038/16410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16410

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing