Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A LIM-homeodomain combinatorial code for motor-neuron pathway selection

Abstract

Different classes of vertebrate motor neuron that innervate distinct muscle targets express unique combinations of LIM-homeodomain transcription factors1,2, suggesting that a combinatorial code of LIM-homeodomain proteins may underlie the control of motor-neuron pathway selection. Studies of LIM-homeodomain genes in mouse, Drosophila melanogaster and Caenorhabditis elegans have revealed functions of these genes in neuronal survival, axon guidance, neurotransmitter expression and neuronal function3,4,5,6,7,8, but, to our knowledge, none of these studies have addressed the issue of a functional code. Here we study two members of this gene family in Drosophila, namely lim3, the homologue of the vertebrate Lhx3 and Lhx4 genes, and islet, thehomologue of the vertebrate Isl1 and Isl2 genes. We show that Drosophila lim3 is expressed by a specific subset of islet-expressing motor neurons and that mutating or misexpressing lim3 switches motor-neuron projections predictably. Our results provide evidence that lim3 and islet constitute a combinatorial code that generates distinct motor-neuron identities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular analysis of the lim3 gene.
Figure 2: Embryonic expression of lim3.
Figure 3: lim3 expression overlaps with isl but not ap expression.
Figure 4: Defects in motor-neuron pathfinding in lim3 mutants.
Figure 5: lim3 misexpression changes motor-neuron projections.
Figure 6: Conservation of expression patterns of LIM-homeodomain proteins between Drosophila and mouse.

Similar content being viewed by others

References

  1. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Appel, B. et al. Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development 121, 4117–4125 (1995).

    CAS  PubMed  Google Scholar 

  3. Way, J. C. & Chalfie, M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5–16 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Thor, S. & Thomas, J. B. The Drosophila islet gene governs axon pathfinding and neurotransmitter identity. Neuron 18, 397–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Lundgren, S. E., Callahan, C. A., Thor, S. & Thomas, J. B. Control of neuronal pathway selection by the Drosophila LIM homeodomain gene apterous. Development 121, 1769–1773 (1995).

    CAS  PubMed  Google Scholar 

  6. Hobert, O., D'Alberti, T., Liu, Y. & Ruvkun, G. Control of neural development and function in a thermoregulatory network by the LIM homeobox gene lin-11. J. Neurosci. 18, 2084–2096 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hobert, O. et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19, 345–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Pfaff, S. L., Mendelsohn, C. L., Stewart, C. L., Edlund, T. & Jessell, T. M. Requirement for LIM homeobox gene Isl-1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Wright, T. R. F. in Results and Problems in Cell Differentiation (ed. Hennig, W.) 95–120 (Springer, Heidelberg, (1987).

    Google Scholar 

  10. Lindsley, D. L. & Zimm, G. G. The Genome of Drosophila melanogaster (Academic, San Diego, (1992).

    Google Scholar 

  11. Michelsen, J. W., Schmeichel, K. L., Beckerle, M. C. & Winge, D. R. The LIM motif defines a specific zinc-binding protein domain. Proc. Natl Acad. Sci. USA 90, 4404–4408 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michelsen, J. W. et al. Mutational analysis of the metal sites in an LIM domain. J. Biol. Chem. 269, 11108–11113 (1994).

    CAS  PubMed  Google Scholar 

  13. Surdej, P. & Jacobs-Lorena, M. Developmental regulation of bicoid mRNA stability is mediated by the first 43 nucleotides of the 3′ untranslated region. Mol. Cell. Biol. 18, 2892–2900 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Landgraf, M., Bossing, T., Technau, G. M. & Bate, M. The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J. Neurosci. 17, 9642–9655 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sink, H. & Whitington, P. M. Location and connectivity of abdominal motoneurons in the embryo and larva of Drosophila melanogaster. Neurobiol. 22, 298–311 (1991).

    Article  CAS  Google Scholar 

  16. Jan, L. Y. & Jan, Y. N. Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and grasshopper embryos. Proc. Natl Acad. Sci. USA 79, 2700–2704 (1982).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Vactor, D., Sink, H., Fambrough, D., Tsoo, R. & Goodman, C. S. Genes that control neuromuscular specificity in Drosophila. Cell 73, 1155–1164 (1993).

    Article  Google Scholar 

  18. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  19. Lin, D. M. & Goodman, C. S. Ectopic and increased expression of Fasciclin II alters motorneuron growth cone guidance. Neuron 13, 507–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Jurata, L. W., Pfaff, S. L. & Gill, G. N. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J. Biol. Chem. 273, 3152–3157 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Morcillo, P., Rosen, C., Baylies, M. K. & Dorsett, D. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev. 11, 2729–2740 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liem, K. F. J., Tremml, G. & Jessell, T. M. Arole for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Sharma, K. et al. Lhx3 and Lhx4 assign identities for motor neurons projecting axons ventral from the neural tube. Cell (in the press).

  24. Kalionis, B. & O'Farrell, P. H. Auniversal target sequence is bound in vitro by diverse homeodomains. Mech. Dev. 43, 57–70 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, N. H. & Kafatos, F. C. Functional cDNA libraries from Drosophila embryos. J. Mol. Biol. 203, 425–437 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. O'Keefe, D. D., Thor, S. & Thomas, J. B. Function and specificity of LIM domains in Drosophila nervous system and wing development. Development 125, 3915–3923 (1998).

    CAS  PubMed  Google Scholar 

  27. Callahan, C. A. & Thomas, J. B. Tau-β-galactosidase, an axon-targeted fusion protein. Proc. Natl Acad. Sci. USA 91, 5972–5976 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hiromi, Y. & Gehring, W. J. Regulation and function of the Drosophila segmentation gene fushi tarazu. Cell 50, 963–974 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Callahan, C. A., Yoshikawa, S. & Thomas, J. B. Tracing axons. Curr. Biol. 8, 582–586 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. S. Goodman for the ftzng-GAL4 flies and anti-fasciclin II antibody; S.Yoshikawa for the UAS-tau-myc-GFP flies; the Midamerica, Umea and Bloomington Stock Centers for providing fly stocks; L. W. Jurata and G. N. Gill for sharing unpublished results; K. Bishop and members of our laboratory for providing advice and technical assistance; and S. Pfaff, K. Sharma, G.Lemke and D. van Meyel for critical review of the manuscript. This work was supported by grants from the NIH and a Pew Scholars Award from the Pew Memorial Trusts (to J.B.T.), an EMBO Long Term Fellowship (to S.G.E.A.) and an HFSP Long-term Fellowship (to S.T.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thor, S., Andersson, S., Tomlinson, A. et al. A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature 397, 76–80 (1999). https://doi.org/10.1038/16275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16275

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing