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LETTERS TO THE EDITORS 
The Editors do not hol,d themselves responsible 
for opi,nions expressed by their correspondents. 
No notice is taken of anonymous communications 

Liquid Helium II 
THE classical theory of liquids1 ,•,•, of which a 

general explanation was given by Prof. Max: B<?rn 
and me in a previous article', and the quantization 
of the theory6 , 8 which followed, led to a conception 
of the nature of viscosity and thermal conduction 
in liquids which we hoped would contribute towards 
the understanding not only of normal liquids, but 
also of 'quantum liquids', of which helium II and 
the electrons in superconducting metals are known 
examples. 

The detailed application of these results to helium II 
has now been completed, and it has been found pos
sible, without further assumption, to explain all the 
well-known properties of this liquid. The essential 
feature of a quantum liquid, as we observed 
previously6 , is the distinction between the intensive 
properties defined thermodynamically and from the 
point of view of kinetic theory. Of special importance 
is the distinction between the 'thermodynamic' 
pressure p, defined in terms of the work done pdV 
during the displacement of a surface in the liqu.id, 
and the 'kinetic' pressure p., the gradient of which 
determines the mean motion of the molecules. It 
can be shown that the difference 1t between these two 
quantities first becomes numerically significant j?9t 
below the A-point ; it is represented as a funct10n 
of temperature in the accompanying figure. 
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T°K. 
:n AS A FUNCTION OF TJIMPERATURE AT THE SATURATION VAPOUR 

PRESSURE 

The equation of motion of the quantum liquid is 

du + op _ 01t (1) 
p dt ox - - ox' 

where p is the density and u the macroscopic velocity. 
It follows rigorously that a reformulation of the first 
law of thermodynamics is required below the A-point, 
of such a kind that it reduces to the usual law 

dQ = dU + pdV (2) 

for the ideal quasi-static process, but has quite a 
different form 

dQ = d(U - 1tV) + p,dV (3) 

for steady motion, such as is observed in the transfer 
effect (studied in detail by Daunt and Mendelssohn'), 
an'1 yet another form 

dQ = d(U + 1tV0 - 1tV) + p,dV (4) 

for wave motion, V O being the rest volume of the 
liquid. The anomalous specific heat and density of 
helium II is thus explained by the presence of thermal 
waves. Similar waves have been observed in ordinary 
liquids8, but are strongly damped and have only a 
small group velocity. 

A thermal wave transfers heat energy and the 
liquid bulk in opposite directions in a ratio depending 
only on the temperature. Kapitza's exper~ents9 on 
the thermomechanical effect m a narrow sht have a 
quantitative explanation not, as Landau10 suggests, 
in the motion of a superfluid at absolute zero, but 
in the almost isothermal passage of a thermal wave 
through the slit. Peshkov's observations11 o~ te~
perature waves in helium II also have a quant1tat1ve 
explanation in terms of the thermal waves. 

Earlier theories due to F. London12, 13 and Tisza",15 

suggest that superfluidity is connected with the con
densation which occurs in a Bose gas not far from 
the A-point. A serious objection to these theori~s 
is the occurrence of entirely analogous phenomena m 
superconductors, where the elect7on~ ~bey Fermi 
statistics. The quantum theory ofhqmds 1s, however, 
equally applicable to superconduc_tivity, OJ?-d an 
interesting feature of the theory outlined here 1s that 
it can explain also phenomena in supei:conductors : 
one requires only to replace the mechanical pressure 
by the electromagnetic stress tensor and to repres~nt 
the almost stationary metallic ions by a conservative 
field of force. 

H. s. GREEN 

D epartment of Mathematical Physics, 
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Theory of Skating 
IT is perhaps less common than it was to find the 

phenomenon of regelation put forward as a complete 
explanation of skating. Very probably anyo~e with 
a scientific education will suspect that plastic flow 
in the solid ice plays an important part, and the 
following observations will, if they are accepted, 
serve to strengthen that opinion. 

It is clear at once that regelation as ordinarily 
understood in this case must require a rapid flow 
of heat through the skate blade from back to front, 
and yet the temperature gradient must be an in
finitesimal one. Obviously the effect of friction must 
also be included, and since the publication of Bowden 
and Hughes' paper1 in 1939 it has become possible 
to calculate what this may be. What no one seems 
to know with any accuracy is the depth of penetra
tion of the skate blade and the amount of ice actually 
displaced. This is not easy to determine experiment
ally, and for present purposes the results have been 
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