β- AND γ-RADIATION FROM U²³⁹ AND Np²³⁹

By PROF. HILDING SLATIS

N connexion with the discovery of the transuranic element 93Np²³⁹, McMillan and Abelson¹ report 0.47 MeV. as the upper energy limit of the β -spectrum. The y-radiation was found to be complex and the energy less than 0.3 MeV. Philipp, Riedhammer and Wiedemann^{2,3} studied the β-spectrum of Np²³⁹ photographically by means of the semicircular method. They found ten internal conversion lines. Eight of them were interpreted as the K-, L- and M-lines of three nuclear y-radiations of the energies 208, 226 and 276 keV., two lines as the L- and M-lines of a $K\alpha$ -radiation. The results are reproduced in the accompanying table. Later, Philipp and Riedhammer⁴ reported that the β -spectrum is a single one and that the β -decay is connected also with a 500 keV. γ -radiation. Recently, Feather and Krishnan⁵ investigated the radiation from U²³⁹ by absorption

Fig. 2. NUCLEAR-LEVEL SCHEME FOR THE DISINTEGRATION OF U²³⁹

measurements. They found, in the main, a single β -spectrum and give the value 1.20 MeV. for the upper energy limit. A γ -radiation of 76 keV. energy and another of at least 300 keV. were also observed.

In the spring of this year I investigated the radiations from U²³⁹ and Np²³⁹. Uranyl salicylaldehyde-o-phenylenediimine was irradiated with slow neutrons, and the U²³⁹ and Np²³⁹ formed were concentrated according to a technique developed by Melander⁶. Absorption measurements in lead showed that the γ -radiation from U²³⁹ consists of two components of energies 920 and 80 keV. Similarly, the γ -radiation from Np²³⁹ was found to consist of three components, 500, 200 and 51 keV.

The β -spectra were studied in a magnetic lens spectrograph constructed by K. Siegbahn⁷. The spectrum of U²³⁹ (Fig. 1) showed two internal conversion lines at 50·7 and 67·8 keV. They constitute *L*and *M*-lines of a nuclear γ -radiation. The former gives the value 73·0 keV., and the latter 73·5 keV. for the energy of this γ -radiation. A Fermi analysis showed that the β -spectrum is double, with the upper energy limits 2·06 and 1·12 MeV. The difference, 0·94 MeV., corresponds to the higher value found by the absorp-

β-RAY LINES	OF	Np ²⁸⁹
-------------	----	-------------------

		Philipp, Riedhammer, Wiedemann					Slätis				
No. of line	Notation	Ηρ	<i>Εβ</i> (keV	;)	Εγ (keV	.)	R	emarks	Ħρ	<i>Εβ</i> (keV.)	$E\gamma$ (keV.)
1 2 3 4 5 6 7 8 9 10 11 12 13	$ \begin{array}{c} L_{1} \\ L_{2} \\ L_{3} \\ M_{4} \\ M_{5} \\ M_{5} \\ K_{6} \\ L_{4} \\ L_{5} \\ M_{5} \\ L_{6} \\ \end{array} $	$\begin{array}{c} 970 \\ 1050 \\ 1090 \\ 1164 \\ 1445 \\ 1615 \\ 1696 \\ 1774 \\ 1936 \\ 2010 \end{array}$	74 - 86 - 92 - 105 - 153 - 153 - 186 - 203 - 221 - 254 - 254 - 271	62400095 640	97- 206- 98 225- 273- 209- 226- 209- 227- 277- 277- 276-	32300624519	LKa MKa fai $=$ $=$ M	fairly weak nedium weak strong rly weak M_4 medium weak nedium a weak	$\begin{array}{c} 631 \\ 671 \\ 724 \\ 766 \\ 818 \\ 861 \\ \\ 1152 \\ 1421 \\ 1578 \\ 1670 \\ 1760 \\ 1905 \\ \end{array}$	$\begin{array}{c} 33 \cdot 9 \\ 38 \cdot 2 \\ 44 \cdot 2 \\ 49 \cdot 2 \\ 55 \cdot 7 \\ 61 \cdot 4 \\ \hline \\ 84 \cdot 8 \\ 155 \cdot 8 \\ 155 \cdot 8 \\ 155 \cdot 4 \\ 204 \cdot 0 \\ 223 \cdot 0 \\ 225 \cdot 0 \\ \hline \\ 255 \cdot 0 \\ \hline \end{array}$	$\begin{array}{c} 56.8\\ 61.1\\ 67.1\\ 55.1\\ 61.6\\ 67.3\\ 206\\ 227\\ 275\\ 208\\ 227\\ 210\\ 229\\ 210\\ 229\\ 278\\\\\\\\\\\\\\\\\\\\ -$
			Electrons			Electrons					
W = Ionization work in Pu =			K		L	М	K	L	М		
and an and a second sec			120			22.7	5.87	121	22.9	5.91	

© 1947 Nature Publishing Group

580

(a) PART OF THE β -spectrum, when the counts are multiplied BY 10; (b) END OF THE β -spectrum, when the counts are multiplied by 100

tion measurements, while the internal conversion line obviously answers to the lower one. These results lead to a disintegration scheme, in which the greatest part of the β -decay leads to an excited Np-nucleus, while a small part leads to the groundstate (Fig. 2).

In the β -spectrum of Np²³⁹ (Fig. 3) thirteen internal conversion lines were found. Seven of these (see table) are connected with the three nuclear γ -radiations 206, 227 and 275 keV. found by Philipp, Riedhammer and Wiedemann³. The six other lines are *L*- and *M*-conversion lines of three new γ -radiations of the energies 57, 61 and 67 keV. The *L*- and *M*-lines of the K α -radiation in Pu²³⁹ were not found in the β -spectrum of Np²³⁹, but appeared strongly in the spectrum of photo-electrons, roleased in a lead that it was fourfold with the upper energy limits

Fig. 4. NUCLEAR-LEVEL SCHEME FOR THE DISINTEGRATION OF ND³⁵⁰

October 25, 1947 vol. 160

1179, 676, 403 and 288 keV. The differences, 503, 273 and 115 keV., correspond to the sum of pairs of energies computed from the internal conversion lines, namely, $503 \approx 275 + 227$, 273 = 206 + 67, $115 \approx 61 + 57$. Therefore, the Pu²³⁹ nucleus seems to have six excited levels (Fig. 4), the differences between which are 275, 227, 206, 67, 61 and 57 keV. Thus the levels have the energies 275, 502, 708, 775, 836 and 893 keV. The β -decay of Np²³⁹ would chiefly lead to the 775 keV. level, while the other decays would lead to the levels 893, 502 keV, and the

ground-state. Hence the γ -quanta would be emitted in cascade, 2, 4 and 6 in succession. An edge in the spectrum of the photo- and Compton-electrons released in lead gives evidence for a cross-over transition from the 775 keV. level to the ground-state in the Pu-nucleus.

A detailed account of these investigations will be published in the near future⁸.

I wish to express my thanks to the head of the Nobel Institute for Physics, Prof. Manne Siegbahn, by whose kind offices my stay in Stockholm was made possible. I am also indebted to the Nobel Foundation for fellowship grants made to me. My thanks are equally due to Dr. Lars Melander, who has carried out the chemical preparations, and to Dr. Kai Siegbahn for valuable discussions.

- ¹ McMillan, E., and Abelson, P. H., Phys. Rev., 57, 1185 (1940).
- ⁹ Philipp, K., and Riedhammer, J., Naturwiss., 32, 216 (1944).
- ³ Philipp, K., Riedhammer, J., and Wiedemann, M., Naturwiss., 32, 230 (1944).
- Philipp, K., and Riedhammer, J., Z. Naturforsch., 1, 372 (1946).
 Feather, N., and Krishnan, R. S., Proc. Camb. Phil. Soc., 43, 267 (1947).
- ⁶ Melander, L., Acta Chem. Scand., 1, 169 (1947).
- ⁷ Siegbahn, K., Phil. Mag., 37, 162 (1946).
- ⁸ Slätis, H., Arkiv Mat., Astr. Fysik, in the press.

INFRA-RED SPECTRUM AND MOLECULAR STRUCTURE OF PHTHIOCERANE

By S. STÄLLBERG-STENHAGEN and Prof. E. STENHAGEN

Institute of Medical Chemistry, University of Uppsala AND

N. SHEPPARD, Dr. G. B. B. M. SUTHERLAND and A. WALSH

Laboratory of Colloid Science, Cambridge

THE properties of phthiocerane, the hydrocarbon derived from the wax alcohol phthiocerol^{1,2} of the tubercle bacillus, for a pure specimen of which we are indebted to Prof. R. J. Anderson, Yale University, indicate a branched-chain structure³, probably a long chain with a methyl side-chain near one end⁴. For comparison with phthiocerane, a series of hydrocarbons having a total of 34, 35 and 36 carbon atoms^{*}, with a methyl side-chain in position 2-, 3-, 4-, or 5- from one end, have been synthesized at Uppsala, partly by the use of new synthetic methods⁵. The melting points of the synthetic hydrocarbons are plotted in Fig. 1 (the data for the *n*-hydrocarbons ^{*} The analytical data for phthiocerol do not allow a decision between the formulæ C_{all} H₂₀(OH)₂OCH₂ (cf. ref. 2). For the hydrocarbon, Stodola and Anderson favour the formula C_{aul}H₂₀(CH)₂CH