Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of short-term folic acid and/or riboflavin supplementation on serum folate and plasma total homocysteine concentrations in young Japanese male subjects

Abstract

Objective:

To investigate the effects of short-term folic acid and/or riboflavin supplementation on serum folate and plasma plasma total homocysteine (tHcy) concentrations in young Japanese male subjects.

Design:

In a double blind, randomized controlled trial.

Intervention:

Subjects were randomly assigned to one of four groups and received a placebo (control group), 800 μg/day folic acid (FA group), 8.4 mg/day riboflavin (R group), or both (FAR group) for 2 weeks.

Setting:

Tokyo, Japan.

Subjects:

In total, 32 healthy male volunteers aged 20–29 years.

Results:

At the end of the 2 week supplementation period, the tHcy concentration decreased significantly in the FA group. Serum folate concentrations had increased between 2.7 and 2.0-fold in the FA and FAR groups, respectively, but the mean within-group changes in serum folate and plasma tHcy concentrations did not differ between these two groups. At the end of the study, alanine amino transferase was decreased in the R and FAR groups, while alanine amino transferase was increased in the FA group.

Conclusion:

Supplementation with folic acid, 800 μg/day, for 2 weeks, increased the serum and red blood cell folate concentrations and decreased the plasma tHcy concentrations in healthy young male subjects. Riboflavin supplementation may have blunted the effect of folic acid, which resulted in a diminished reduction of tHcy in our subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Baggott JE, Vaughn WH, Juliana MM, Eto I, Krumdieck CL, Grubbs CJ (1992). Effect of folate deficiency and supplementation on methylnitrosourea-induced rat mammary tumors. J Natl Cancer Inst 84, 1740–1744.

    Article  CAS  Google Scholar 

  • Bates CL, Fuller NJ (1986). The effect of riboflavin deficiency on methylentetrahydrofolate reductase and folate metabolism in the rat. Br J Nutr 55, 455–464.

    Article  CAS  Google Scholar 

  • Biamonte AR, Schneller GH (1951). A study of folic acid stability in solutions of the B complex vitamins. J Am Pharm Assoc 40, 313–320.

    Article  CAS  Google Scholar 

  • Bills ND, Hinrichs SH, Morgan R, Clifford AJ. Bills ND, Hinrichs SH, Morgan R (1992). Delayed tumor onset in transgenic mice fed a low-folate diet. J Natl Cancer Inst 84, 332–337.

    Article  CAS  Google Scholar 

  • Boisvert WA, Castaneda C, Mendoza I, Langeloh G, Solomons NW, Gershoff SN et al. (1993). Prevalence of riboflavin deficiency among Guatemalan elderly people and its relationship to milk intake. Am J Clin Nutr 58, 85–90.

    Article  CAS  Google Scholar 

  • Brouwer IA, Dusseldorp M, Thomas CMG, Duran M, Hautvast JG, Eskes TK et al. (1999). Low dose folic acid supplementation decreases plasma homocysteine concentrations. Am J Clin Nutr 69, 99–104.

    Article  CAS  Google Scholar 

  • den Heijer M, Brouwer IA, Bos GM, Blom HJ, van der Put NM, Spaans AP et al. (1998). Vitamin supplementation reduces blood homocysteine levels. Arterioscler Thromb Vasc Biol 18, 356–361.

    Article  CAS  Google Scholar 

  • Dickinson CJ (1995). Does folic acid harm people with vitamin B12 deficiency? QJM 88, 357–364.

    CAS  PubMed  Google Scholar 

  • Fenech M, Aitken C, Rinaldi J (1998). Folate, vitamin B12, homocysteine status and DNA damage in young Australian adults. Carcinogenesis 19, 1163–1171.

    Article  CAS  Google Scholar 

  • Frick B, Schrocksnadel K, Neurauter G, Wirleitner B, Artner-Dworzak E, Fuchs D (2003). Rapid measurement of total plasma homocysteine by HPLC. Clin Chim Acta 331, 19–23.

    Article  CAS  Google Scholar 

  • Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG et al. (1995). A candidate risk factor for vascular disease. Nat Genet 10, 111–113.

    Article  CAS  Google Scholar 

  • Fung TT, Rimm EB, Spiegelman, Rifai N, Tofler GH, Willett WC et al. (2001). Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 73, 61–67.

    Article  CAS  Google Scholar 

  • Gao X, Yao M, McCrory MA, Ma G, Li Y, Roberts SB et al. (2003). Dietary pattern is associated with homocysteine and B vitamin status in an urban Chinese population. J Nutr 133, 3636–3642.

    Article  CAS  Google Scholar 

  • Graham IM, Daly LE, Refsum HM, Robinson K (1997). Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 277, 1775–1781.

    Article  CAS  Google Scholar 

  • Guinotte CL, Burns MG, Axume JA, Hata H, Urrutia TF, Alamilla A et al. (2003). Methylentetrahydrofolate reductase 677C → T variant modulates folate status response to controlled folate intakes in young women. J Nutr 133, 1272–1280.

    Article  CAS  Google Scholar 

  • Hultquist DE, Xu F, Quandt KS, Shlafer M, Mack CP, Till GO et al. (1993). Evidence that NADPH-dependent methemoglobin reductase and administered riboflavin protect tissues from oxidative injury. Am J Hematol 42, 13–18.

    Article  CAS  Google Scholar 

  • Hustad S, Ueland PM, Vollset SE, Zhang Y, Bjørke-Monsen AL, Schneede J (2000). Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylentetrahydrofolate reductase C677T polymorphism. Clin Chem 46, 1065–1071.

    CAS  PubMed  Google Scholar 

  • Inada M, Matsuoka M, Otsuka H (1989). Nutritional status of vitamins in the elderly observed by administration of a multivitamin preparation and relationship between immunologic indices and blood concentrations of vitamin B6. Vitamin 63, 29–35.

    Google Scholar 

  • Jacques PF, Bostom AG, Wilson PW, Rich S, Rosenberg IH, Selhub J (2001). Determinants of plasma total homocysteine concentration in the Framingham off-spring cohort. Am J Clin Nutr 73, 613–621.

    Article  CAS  Google Scholar 

  • Jusco W, Levy G (1967). Absorption, metabolism, and excretion of Riboflavin-5′-phosphate in Man. J Pharmaceut Sci 56, 58–62.

    Article  Google Scholar 

  • Kimura M, Umegaki K, Higuchi M, Thomas P, Fenech M (2004). Methylentetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J Nutr 134, 48–56.

    Article  CAS  Google Scholar 

  • Klerk M, Verhoef P, Verbruggen B, Schouten EG, Blom HJ, Bos GM et al. (2002). Effect of homocysteine reduction by B-vitamin supplementation on markers of clotting activation. Thromb Haemost 88, 230–235.

    Article  CAS  Google Scholar 

  • Lakshmi AV, Ramalakshmi BA (1998). Effect of pyridoxine or riboflavin supplementation on plasma homocysteine levels in women with oral lesions. Natl Med J India 11, 171–172.

    CAS  PubMed  Google Scholar 

  • Landgren F, Israelsson B, Lindgren A, Hultberg B, Andersson A, Brattström L (1995). Plasma homocysteine acute myocardial infraction: homocysteine-lowering effect of folic acid. J Intern Med 237, 381–388.

    Article  CAS  Google Scholar 

  • Lange H, Suyapranata H, Luca GD, Dille J, Kallmayer K, Pasalary MN et al. (2004). Folate therapy and in-stent restenosis after coronary stenting. N Engl J Med 350, 2673–2681.

    Article  CAS  Google Scholar 

  • Lathrop SL, Shane B, Bagley PJ, Nadeau M, Shih V, Selhub J (2003). Combined marginal folate and riboflavin status affect homocysteine methylation in cultured immortalized lymphocytes from persons homozygous for the MTHFR C677T mutation. J Nutr 133, 2716–2720.

    Article  Google Scholar 

  • Liao F, Huang PC (1986). Effects of moderate riboflavin deficiency on lipid metabolism in rats. Proc Natl Sci Counc B ROC 11, 128–132.

    Google Scholar 

  • Maruyama C, Araki R, Takeuchi M, Kuniyoshi E, Iwasawa A, Maruyama T et al. (2004). Relationships of nutrient intake and lifestyle-related factors to serum folate and plasma homocysteine concentrations in 30–69 year-old Japanese. J Nutr Sci Vitaminol 50, 1–8.

    Article  CAS  Google Scholar 

  • McKay DL, Perrone G, Rasmussen H, Dallal G, Blumberg JB (2000). Multivitamin/mineral supplementation improves plasma B-vitamin status and homocysteine concentration in healthy older adults consuming a folate-fortified diet. J Nutr 130, 3090–3096.

    Article  CAS  Google Scholar 

  • McKinley MC, McNulty H, McPartlin J, Strain JJ, Scott JM (2002). Effect of riboflavin supplementation on plasma homocysteine in elderly people with low ribo-flavin status. Eur J Clin Nutr 56, 850–856.

    Article  CAS  Google Scholar 

  • McNulty H, McKinley MC, Barbara W, McPartlin J, Strain JJ, Weir DG et al. (2002). Impaired functioning of thermolabile methylentetrahydrofolate reductase is dependent on riboflavin status. Am J Clin Nutr 76, 436–441.

    Article  CAS  Google Scholar 

  • Moriyama Y, Okamura T, Kajinami K, Iso H, Inazu A, Kawashiri M et al. (2002). Effects of serum B vitamins on elevated plasma homocysteine levels associated with the mutation of methylenetetrahydrofolate reductase gene in Japanese. Atherosclerosis 164, 321–328.

    Article  CAS  Google Scholar 

  • Noma K, Higashi Y, Yoshizumi M (2003). Differences in myocardial infarction and stroke between men and women. Cardioangiology 54, 406–412.

    Google Scholar 

  • Nurk E, Tell GS, Vollset SE, Nygard O, Refsum H, Nilsen RM et al. (2004). Changes in lifestyle and plasma total homocysteine: the Hordaland homo-cysteine study. Am J Clin Nutr 79, 812–819.

    Article  CAS  Google Scholar 

  • Perna AF, Ingrosso D, De Santo NG (2003). Homocysteine and oxidative stress. Amino Acids 25, 409–417.

    Article  CAS  Google Scholar 

  • Perry CA, Renna SA, Khitun E, Ortiz M, Moriarty DJ, Caudill MA (2004). Ethnicity and race influence the folate status response to controlled folate intakes in young women. J Nutr 134, 1786–1792.

    Article  CAS  Google Scholar 

  • Rao GA, Riley DE, Larkin EC (1984). Fatty liver caused by chronic alcohol ingestion is prevented by dietary supplementation with pyruvate or glycerol. Lipids 19, 583–588.

    Article  CAS  Google Scholar 

  • Ross NS, Hansen TP (1992). Riboflavin deficiency is associated with selective preservation of clinical flavoenzyme-dependent metabolic pathways. BioFactors 3, 185–190.

    CAS  PubMed  Google Scholar 

  • Selhub J, Jacques PR, Bostom AG, D'Agostino RB, Wilson PW, Belanger AJ et al. (1995). Association between plasma homocysteine concentrations and extra cranial carotid artery stenosis. N Engl J Med 332, 286–291.

    Article  CAS  Google Scholar 

  • Shimakawa T, Nieto FJ, Malinow MR, Chambless LE, Schereiner PJ, Szklo M (1997). Vitamin intake: a possible determinant of plasma homocyst(e)ine among middle-aged adults. Ann Epidemiol 7, 285–293.

    Article  CAS  Google Scholar 

  • Skoupy S, Fodinger M, Veitl M, Perschl A, Puttinger H, Rohrer C et al. (2002). Riboflavin is a determinant of total homocysteine plasma concentrations in end-stage renal disease patients. J Am Soc Nephrol 13, 1331–1337.

    Article  CAS  Google Scholar 

  • Sprecher DL, Pearce GL (2002). Fiber-multivitamin combination therapy: a beneficial influence on low-density lipoprotein and homocysteine. Metabolism 51, 1166–1170.

    Article  CAS  Google Scholar 

  • Tamura T (1990). Microbiological Assay of Folates. In: Wiley LL (ed) Folic Acid Metabolism in Health and Disease. Liss Press. pp 121–137.

    Google Scholar 

  • Tamura T, Turnlund JR (2004). Effect of long-term, high-copper intake on the concentrations of plasma homocysteine and B vitamins in young men. Nutrition 20, 757–759.

    Article  CAS  Google Scholar 

  • Ubbink JB, Vermaak WJH, van der Merwe A, Becker PJ (1993). Vitamin B-12, vitamin B-6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 57, 47–53.

    Article  CAS  Google Scholar 

  • van Oort FA, Mels-Boonstra A, Brouwer IA, Clarke R, West CE, Katan MB et al. (2003). Folic acid and reduction of plasma homocysteine concentrations in older adults. Am J Clin Nutr 77, 1318–1323.

    Article  CAS  Google Scholar 

  • Yoshida K, Hosokawa A, Yoshida S (1961). Microdetermination of riboflavin in the human blood and their results with three methods in different principles. Mie Med J 11, 13–15.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Araki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, R., Maruyama, C., Igarashi, S. et al. Effects of short-term folic acid and/or riboflavin supplementation on serum folate and plasma total homocysteine concentrations in young Japanese male subjects. Eur J Clin Nutr 60, 573–579 (2006). https://doi.org/10.1038/sj.ejcn.1602351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602351

Keywords

This article is cited by

Search

Quick links