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and merging others. Further, we have neglected 
factors depending on the frequency, which may 
easily shift a maximum by 10 per cent of its wave
number, and we have chosen a few intensity factors 
in such a way that the aspect of the spectrum as a 
whole is correct, without considering detailed agree
ment. Thus the 'line' 235 em. which Krishnan finds 
particularly sharp could be easily accounted for by 
giving our branch 9 a different amplitude. 

If Krishnan would attack our method of approx
imation and our wholesale simplifications, I should 
raise no objection apart from asking him to make it 
better. But his conclusion that "the second-order 
Raman effect is a. discrete one, and is different in 
its nature from that deduced from the lattice 
dynamics of Born", shows that he does not under
stand the theory, which is a straightforward applica
tion of quantum mechanics. 

I do not intend to continue this discussion. 
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Diffraction of Light by High-Frequency 
Ultrasonic Waves 

RECENTLY diffraction patterns have been produced 
in this laboratory1 by using ultrasonic waves of 
frequencies higher than 100 Mc.fsec. At such high 
frequencies, the patterns show some interesting 
features. Progressive waves of frequency 102·6 
Mc.fsec. and maintained in water have been employed. 
When the sound wave is exactly normal to the 
incident light, the diffraction pattern disappears 
altogether. On tilting the crystal h older to one side 
or the other, so that the light rays meet the sound 
wave-front at an angle of 52', the first-order diffraction 
line alone on the appropriate side is obtained. This 
angle agrees closely with the value derived from the 
equation "Aj"A * = 21J. sin a, where "A and "A* are the 
wave-lengths employed and IL is the refractive index 
of water. In no position of the sound wave-front 
has it been possible to get the first-order line on 
both sides at the same time. The value of the above 
angle for which the first-order line attains the maxi
mum intensity is quite critical. Even a slight varia
tion of about 2' has been found to reduce its intensity 
to half. Thus the diffraction effect at such high 
frequencies ("A*= 0·00148 em.) appears to be very 
much like reflexion in the Bragg sense. 

Contrary to the above results, we have found that 
patterns at 50 Mc.jsec. show the presence of both 
the first-order lines for normal incidence. For 
oblique incidence, the first-order line on the appro
priate side increases in intensity as the wave-fr<:mt 
is tilted and attains a maximum at the correspondmg 
reflexion angle. The first-order line on the opposite 
side decreases in intensity but does not vanish 
altogether, showing that the range of reflexion is not 
so sharp as in the previous case. 

Bar•, Parthasarathy• and others have shown t_hat 
similar phenomena make their appearance, but m a 
less pronounced manner, at ordinary frequencies such 
as about 20 Mc.jsec. Our investigations show that 
when 100 Mc.fsec. is reached, the well-known _features 
of diffraction are suppressed and the effect sunulates 
reflexion very closely. It may be mentioned here 
that Nath' had shown that the first order would be 
dominant over the higher ones in the very high 

frequency region. Our observations are in conformity 
with this view. 
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Dimensional Changes Accompanying Capillary 
Condensation 

Banks and Barkas1 have recently directed attention 
to the mechanical interaction between capillary con
densed liquid and the walls of the pores containing it, 
and they deduce that under certain conditions the 
pores may collapse when the vapour pressure over 
the system is lowered. However, when capillary 
condensation occurs, the liquid condenses on an 
adsorbed film-not on a bare surface-and it is to 
be expected that when the vapour pressure is sufficient 
to cause condensation of liquid, there will always be 
present an adsorbed film which is mobile. A mobile 
film exerts a pressure• numerically equal to the free
energy lowering per unit surface due to its adsorption, 
and in a capillary tube this pressure opposes the 
tension of the condensed liquid. Effects due to the 
pressure of a surface film have been neglected by 
Banks and Barkas in their calculations. 

The role of the film pressure in this kind of problem 
may be seen by considering the dimensional changes 
accompanying adsorption and capillary condensation 
in a cylindrical cavity with very thin elastic walls. 
If the cavity is originally in vacuo, on adsorption of 
a vapour the film pressure cp stretches the walls of 
the cylinder. Changes in radius may be examined 
by considering the forces acting across a plane con
taining the axis of the cylinder. At equilibrium there 
is no net force acting over any imaginary plane cutting 
an isolated system, so that after adsorption the cir· 
cumferential tension in the wall of the cylinder is 
equal and opposite to the film pressure cp, or 

k (Tl-To) h d . . 1 --- = cp, where T 1, T 0 are t e new an ongma 
To 

radii and k is related to the elastic constants of the 
material. (When the expansion is large k may depend 
on the expansion ; for present purposes it is treated 
as a constant.) Similarly, the cylinder will increase 
in length until the total longitudinal tension in the 
walls balances the longitudinal force of the 
adsorbed film. 

When capillary condensation occurs, the wall of 
the cavity becomes wetted by liquid and the surface 
pressure increases to cp + y cos a, where y is the sur
face tension of the liquid and a is the contact angle. 

(a) Changes in Radius. Supposing the radius to 
remain constant at T 1, the forces acting over the plane 
containing the axis of the cylinder would be (i) the 

· · h II k (T,-To) ("") h til tenswn m t e wa s ---, u t e m pressure 
To 

(cp + y cos a), and (iii) the tension in the condensed 
. . 2 y cos a 

liquid. This last quant1ty 1s x 2 T 1 X 1 = 
Tl 

4 y cos a per unit length, and the total expansive 
force per unit length acting across the plane would be 

_ 2k (T1 - To) + 2 (cp + y cos a) - 4 y cos a, 
ro 
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