Postulates of Probability

<text><text><text><text><text><text><text>

$$C f(\mathbf{c} \cdot \mathbf{b} | \mathbf{a}) = f(\mathbf{c} | \mathbf{b} \cdot \mathbf{a}) f(\mathbf{b} | \mathbf{a}).$$

where f is an arbitrary function of a single variable and C is an arbitrary constant. Thus far, probability has been identified only as some measure of reasonable belief. If $\mathbf{b}|\mathbf{a}$ is one such measure, then $f(\mathbf{b}|\mathbf{a})$ is another and may just as well be called the probability. It is immaterial whether we use the symbol $\mathbf{b}|\mathbf{a}$ or $f(\mathbf{b}|\mathbf{a})$. For simplicity we write, therefore,

$$C(\mathbf{c} \cdot \mathbf{b} | \mathbf{a}) = (\mathbf{c} | \mathbf{b} \cdot \mathbf{a}) (\mathbf{b} | \mathbf{a}).$$

Consideration of the case in which c is the same proposition as **b** identifies the constant C with the probability of certainty. This is conveniently, though not necessarily, given the value unity. The second postulate is this: the probability that a proposition is false is determined by the probability that it is true. The symbolic statement is that \sim **b**|**a** is a function of **b**|**a**, where \sim **b** denotes the proposition not $-\mathbf{b}$. Consistency with Boolean algebra now requires that

$$(-b|a)^m + (b|a)^m = 1,$$

where m is an arbitrary number. If $\mathbf{b} | \mathbf{a}$ is a measure of reasonable belief, so also is $(\mathbf{b} | \mathbf{a})^m$. We may therefore call $(\mathbf{b} | \mathbf{a})^m$ the probability or, making a choice which is different only in form, we may let m = 1and write

$$\sim b|a + b|a = 1.$$

The application of Boolean algebra to the rules already obtained yields others, of which the most important are

 $|c\cdot b|a + - c\cdot b|a = b|a$ and $c \vee b|a + c\cdot b|a = c|a + b|a$

where e v b denotes the disjunctive proposition e-or-b. A longer discussion, including the mathematical derivations, is soon to appear in the American Journal of Physics.

R. T. Cox.

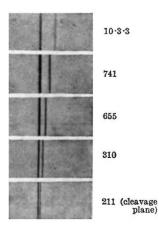
Department of Physics Johns Hopkins University, Baltimore 18, Maryland.

Dec. 18.

¹ Keynes, J. M., "A Treatise on Probability" (London, 1929). ¹ Jeffreys, H., "Theory of Probability" (Oxford, 1939).

Large Dispersion in X-ray Spectrography Obtained by Using **Ground Faces**

GROUND faces of calcite can be used with the view of obtaining large dispersion in X-ray spectrography. In a paper published in 1944¹, I showed that a face ground parallel to the lattice plane 655 (Miller's notation in the primitive lattice) yielded good results. The spacing for this plane is 1-032 A. Since then, I have made attempts with faces ground parallel to the planes 741 and 10·3·3, for which the spacings are 0.716, and 0.533 A. respectively. In the accompanying



Molybdenum $K\alpha_1\alpha_2$ in the first order.

reproduction the molybdenum Ka-doublet in the first order is recorded for a series of natural (211 and 310) and ground (655, 741 and 10·3·3) faces on calcite from Iceland. The photographs were obtained in a vacuum spectrograph of the Siegbahn type with an effective radius of 18 cm., 2-fold magnification.

TABLE 1. $\frac{d\theta}{d\lambda}$. 10⁻⁷

pqr	d	$\lambda = 0.708 \text{A}.$	$\begin{array}{c} \mathrm{CuK}\alpha_1\\ \lambda = 1.537\mathrm{A}. \end{array}$	$\begin{array}{l} \operatorname{ScK}\alpha_1\\ \lambda = 3.025 \mathrm{A}. \end{array}$
10.3.3	0.533 A.	12.55		
741	0.716 A.	8.03		
655	1.032 A.	5.16	7.26	
310	1.532 A.	3.37	3.80	—
211	3.029 A.	1.66	1.71	1.90

The accompanying table shows the values of $\frac{d\theta^1}{d\lambda}$ for five lattice planes of calcite and for three Ka_1 lines (molybdenum, copper and scandium). From these values the calculation of the displacement of a line on the film for a change in λ of $\Delta \lambda = 1$ X.U. is made by means of the formula

$$D_{pgr} = 2 \times 10^{-11} \times \frac{d\theta}{d\lambda} \times R \text{ cm.},$$

where R is the radius of the spectrograph and θ the reflexion angle. G. AMINOFF.

Mineralogical Department

Swedish Museum of Natural History, Stockholm.

Dec. 20.

¹ K. Vetenskapsakad. Ark. Kemi, etc., 18 B, No. 14 (1944).

Accuracy of Atomic Co-ordinates Derived from X-ray Data

PREVIOUS work^{1,2} on this topic led to methods and formulæ applic-able to three-dimensional summation, and it was obviously desirable to extend this to the more limited (and usual) two- and one-dimensional cases. This has now been done, and in a paper, to appear in full else-where, I have obtained general results valid for the more simple types of series.

of series. Finite summation errors are shown, in a diatomic case, to be of the same order whatever the dimensions of the series, provided that the resolution is the same in each case; resolution being here defined as the distance between atomic peaks in the particular synthesis. On the basis of the above treatment, it is shown that if a set of observed |F| values is terminated, by real thermal motion, at reciprocal spacing ρ (= 2 sin θ); the errors in atomic co-ordinates, δ_n , are given by:

$$\delta_n \propto 1/\rho(3+n)/2$$

where *n* is the number of dimensions of summation. This relation makes possible a comparison of the errors in different structures containing the same type and number of atoms. The 'artificial temperature factor' method^{3,4} of ensuring convergence is also examined, and is shown to introduce errors greater than those for the elimination of which it is applied; suggestions are made, however, as to the way in which corrections may be made for these. Finally, the effect of experimental errors, in all cases, is reduced to the simple formula:

$$\varepsilon_n < 0.66 \Delta e / (N \sqrt{v_n}).$$

Here $\triangle s$ is the probable experimental error in the |F| values (c. 0.6³); N is the atomic number of the atom under consideration; v_n is the 'volume' of the repeat unit for dimensions of summation n; s_n is the mean error in A. of the atomic parameters. In a particular case