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complete that is, freedom from twin boundaries, it was 
found that different loads were required for plates of different orienta· 
tion ; and with some cuts clearance could not be effected even with 
loads which were liable to cause fracture. The relation between the 
force required for what might be termed 'piezocrescence' and the 
direction relative to the crystallographic axes Is shown In the solid 
figure in Fig. 2. Each radius vector of this surface is Inversely pro· 
portional to the torque required to untwin the crystal and is drawn 
normal to the major surface of the plate. In this 'piezocrescent' figure 
the lighter lobes Indicate where the orientation of the crystallographic 
axes x, y, u remains unchanged and the darker lobes where the polarity 
of these axes Is reversed by the treatment. Only six lobes are shown, 
though twelve are really present, since from the method of definition 
it follows that a radius vector drawn in any direction must be of the 
same character and of equal amount to the radius vector drawn in 
the opposite direction. 

Other experiments were performed applying bending stresses. These 
were found to give rise to characteristic twin patterns in certain cuts. 
Experiments carried out on bars subjected to a temperature gradient 
whUe cooling from a temperature above the transition point also 
produced patterns which were characteristic of the cut. Presumably 
these patterns arose as a result of stresses set up by differential cool
ing. Some of them are shown in Fig. 3, and it is interesting to compare 
them with the similar patterns obtained by Zinserling' using a com
pletely different method. 

This work, of which a fuller account wlll be published elsewhere, 
has been done in co-operation with the Research Laboratories of the 
General Electric Company, Ltd., Wembley, and we are grateful to 
the director for permission to publish. 
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USERS of quartz crystals for telecommunication purposes will be 
anxious to know the practical importance of the results described by 
Dr. and Mrs. Wooster on the untwinning of quartz plates. The most 
effective method, in which a steady torque Is applied to the plate 
during heat treatment, can be used for most cuts of the rotated Y -cut 
class. These include the important BT cut, but exclude the Y -cut 
itself and the Z-cut. In applying the treatment, depending on the 
fulfilment of certain conditions which will be discussed elsewhere, 
the proportion of successes can be so high that the large-scale process
ing of quartz plates to remove electrical twinning is a practicable 
propOsition. This method can thus be applied directly to the majority 
of the practical cuts with the noteworthy exception of the X -cut. 
The X -cut can be treated by other means which, however, are at present 
less effective. 

The regular twin patterns obtained by Dr. and Mrs. Wooster are 
of more practical interest than might at first appear. For example, 
the production of artificial twins of the kind shown in their Fig. 3 
has enabled oscillator plates of a novel type to be cut. By metall!z!ng 
the major surfaces of such a plate and applying an alternating elec
trical pOtential to the electrodes so formed, it is pOssible to excite 
a second order flexural mode of vibration in the plane of the plate. 
This Is Illustrated in the accompanying drawing, the arrows showing 
the sense of the strain in each of the four regions during one half· 
cycle. The type of deformation obtained is exaggerated for clarity. 
To obtain a similar result with a single crystalline plate, specially 
divided metallized electrodes would have to be used. 
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Osmotic Pressure of Rod-shaped Particles in Solution 
IT has been pOinted out by several workers, Dobry' and Wo. Ostwald 

et al.', that Van't Hoff's relationship between the osmotic pressure p 
and the concentration C of a dissolved substance 

p RTO 
is a limiting law. Some substances such as the sugars obey this law 
up to relatively high concentrations•, but high molecular substances, 
especially those the molecular shapes of which deviate greatly from 
the spherical, show considerable departures from the linear relation· 
ship between osmotic pressure and concentration. 

The equation of Haller• derived thermodynamically gives a very 
good interpretation of the results of osmotic pressure measurements. 
The equation 

p= R: cn1) [1 + (L _ _!) + 
V n 0 RT 2 n 0 

G1 + .. · J •.. (I) 

in which v• is the molar volume of the solvent, n, and n, the number 
of molecules of solute and solvent respectively and {J and y are con
stants. From the above equation It is evident that a first approxima
tion to the osmotic pressure is 

p = R: + K 
V n 0 n 0 

in which K is a constant, and if still better approximations are 
required terms like 

L and M 

may be added. 
From Lhe above it Is clear that the interpretation of osmotic pressure 

measurements depends on the determination of the constants K, L 
and M which vary with different substances. 

ln this communication an expression for the dependence of the 
osmotic pressure on the concentration for rod·shaped particles is 
given in term• of the ratio of the diffusion constant at a certain con
centration, to the diffuaion constant at infinite dilution. 

A rod-shaped particle in solution, In the absence of other particles 
of its own type, will show Brownian motion of translocation as well 
as rotation round either of its axes. The translocatory motion can be 
expressed in terms of the diffusion constant by the following equation•·•: 
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