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The Phosphodiesterase Type 4 Inhibitor,
Rolipram, Enhances Glucocorticoid

Receptor Function

Andrew H. Miller, M.D., Gerald ]. Vogt, Ph.D., and Bradley D. Pearce, Ph.D.

Previous studies have demonstrated that antidepressants can
enhance glucocorticoid receptor (GR) translocation and
function, possibly through activation of cAMP and
downstream cAMP dependent protein kinases. Accordingly,
we examined GR function in cells treated with rolipram, a
phosphodiesterase (PDE) type 4 inhibitor that antagonizes
cAMP breakdown. Compared with vehicle-treated cells,
rolipram alone and in combination with dexamethasone
significantly enhanced GR function as measured in both mouse
L929 cells and rat C6 glioma cells stably transfected with
reporter genes driven by upstream glucocorticoid response
elements. Rolipram’s facilitation of GR function was reversible

by the GR antagonist, RU486, and was associated with reduced
cytosloic GR binding, indicating rolipram enhancement of GR
nuclear translocation. Finally, rolipram potently augmented
GR enhancement by the antidepressant, desipramine. These
findings broaden the potential pathways by which PDE type 4
inhibitors can influence cellular function and indicate that these
agents may have special utility in disorders associated with
impaired GR-mediated feedback inhibition.
[Neuropsychopharmacology 27:939-948, 2002]
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Hyperactivity of the hypothalamic-pituitary adrenal
(HPA) axis is a common and reproducible finding in
patients with major depression (Pariante and Miller
2001; Holsboer 2000). A major factor responsible for
these HPA axis changes is believed to be increased cor-
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ticotropin releasing hormone (CRH), which may also
contribute to the behavioral features of this disorder
(Owens and Nemeroff 1993). Altered feedback regula-
tion of CRH by glucocorticoids is one mechanism that
may contribute to the CRH changes found in major de-
pression (Pariante and Miller 2001; Holsboer 2000). Spe-
cifically, evidence exists that the receptors for glucocor-
ticoids may become impaired in major depression,
leading to glucocorticoid resistance in selected body tis-
sues including the brain and immune system (Pariante
and Miller 2001; Holsboer 2000). Recent evidence sug-
gests that antidepressants may reverse glucocorticoid
receptor changes in depression by direct effects on the
glucocorticoid receptor (GR) (Pariante and Miller 2001;
Holsboer 2000; Holsboer and Barden 1996). Both in
vitro and in vivo data indicate that antidepressants can
increase GR number and facilitate GR function (Pari-
ante and Miller 2001; Holsboer and Barden 1996). Given
evidence that a number of antidepressants have effects
on signal transduction pathways involving cyclic AMP
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(cAMP) (Chen and Rasenick 1995a,b; Nestler et al. 1989;
Nibuya et al. 1996), there has been speculation that the
influence of antidepressants on GR is through their ef-
fects on cAMP-related signal transduction events (Pari-
ante and Miller 2001).

A large body of data demonstrates that cAMP signal
transduction pathways are involved in the regulation of
the GR. For example, direct evidence of facilitation of
GR function has been demonstrated for B2 receptor ag-
onists, cCAMP, and protein kinase A (PKA) (Eickelberg
et al. 1999; Schmidt et al. 2001; Sato et al. 1996; Rangara-
jan et al. 1992). Phosphodiesterases (PDE) are a group
of enzymes that catalyze the breakdown of cyclic nucle-
otides (Beavo et al. 1994). The PDE isozyme type 4 is
specific for cAMP and is expressed throughout the
brain and immune system (Perez-Torres et al. 2000; En-
gels et al. 1994). Thus, inhibitors of PDE type 4 provide
a pharmacologic strategy to increase prevailing cAMP
levels in relevant target tissues.

One PDE type 4 inhibitor, rolipram, has been shown to
have antidepressant effects (Zhu et al. 2001; Bobon et al.
1988, Eckmann et al. 1988). Rolipram was first demon-
strated to have potent antidepressant activity in animal
models (Zhu et al. 2001; Wachtel and Schneider 1986).
However, clinical trials, while providing evidence of effi-
cacy, revealed gastrointestinal side effects (nausea) and
lack of clear superiority over other agents (Zhu et al. 2001;
Eckmann et al. 1988). Interestingly, rolipram also has
been found to exhibit potent anti-inflammatory proper-
ties including inhibition of the pro-inflammatory cyto-
kine, tumor necrosis factor (TNF) « (Zhu et al. 2001; Ross
et al. 1997). Since many of rolipram’s immunologic effects
appear to be consistent with the actions of glucocorti-
coids, and we have posited that antidepressants work in
part through their effects on GR function, we wondered
whether rolipram may have direct effects on the GR. Us-
ing cell lines stably transfected with reporter gene con-
structs downstream of a mouse mammary tumor virus
(MMTYV) promoter containing multiple glucocorticoid re-
sponse elements (GREs), the present study endeavored to
address the impact of rolipram on GR function.

MATERIALS AND METHODS
Materials

Rolipram, unlabeled dexamethasone (Dex), desipramine
hydrochloride (DMI) and RU486 were obtained from
Sigma (St. Louis, MO). Radiolabeled [6,7-°H] Dex was
obtained from New England Nuclear Research Prod-
ucts (Boston, MA). The LMCAT cell line was gener-
ously provided by Dr. E.R. Sanchez (Department of
Pharmacology, Medical College of Ohio, Toledo, OH).
The pMAMneo-LUC luciferase expression vector was a
kind gift from Dr. D. Miller and Dr. P. Bates (University
of Louisville, Louisville, KY).
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Cell Culture and Stable Transfection

Mouse fibroblast L1929 cells, LMCAT cells, and rat glioma
C6 cells were grown in 175-cm? flasks at 37°C with 5%
CO, in ambient air. The LMCAT cell line was derived
from 1929 cells, which were stably transfected with a
linked MMTV-LTR promoter and CAT reporter and a
neomycin resistance gene. The L.929 culture medium con-
sisted of Dulbecco’s Modified Eagle’s Medium (DMEM)
with 10% heat-inactivated (56°C, 30 min) calf serum, 50
units/ml penicillin, and 50 pg/ml streptomycin. The
LMCAT culture medium was DMEM with 10% stripped
newborn calf serum (charcoal /dextran-extracted, heat-in-
activated) and 0.2 mg/ml G418 sulfate (geneticin) antibi-
otic. For Cé6 cells, the culture medium was DMEM with
10% stripped fetal bovine serum, 50 units/ml penicillin,
50 pg/ml streptomycin, and 0.2 mg/ml geneticin.

The C6 glioma cells were stably transfected with a
PMMTVneo-LUC construct (GenBank Accession # U02448)
using Effectene (Qiagen) transfection reagent. The pM-
MTVneo-LUC plasmid contained the MMTV-LTR pro-
moter and firefly luciferase reporter gene plus a neomy-
cin resistance gene combined with a SV40 promoter.
The resulting clonal cell line was denoted as C6LUC.B3.

For drug treatment, LMCAT and C6LUC.B3 cells
were subcultured in fibronectin-coated 6-well plates
and grown for 24 h to 95% final confluency. For binding
assays, L929 cells were subcultured in 175-cm? flasks
for 72-96 h to 95% final confluency before drug treat-
ment or cell harvesting. Drug treatment consisted of in-
cubation for 24 h with fresh medium containing the de-
sired final concentrations of rolipram (1 nM to 10 uM),
DMI (10 uM), Dex (1 nM to 10 uM), and/or other phar-
macological reagents (40 uM RU486). Appropriate ve-
hicle controls were used in all experiments, and each
experiment included at least three replicates of each
treatment condition.

CAT and Luciferase Assays

The LMCAT cell line and the stably transfected C6 cell
line contain a reporter gene (CAT and luciferase, re-
spectively), which is inducible by glucocorticoids through
the long terminal repeat (LTR) of the mouse mammary
tumor virus promoter. The MMTV-LTR promoter con-
tains multiple glucocorticoid response elements up-
stream of each reporter gene.

The induced CAT concentrations were measured by
CAT ELISA (Roche Diagnostics, Indianapolis, IN) ac-
cording to manufacturer’s protocol. CAT levels were
determined by colorimetry of a peroxidase plus sub-
strate reaction, measured by absorption at 405 and 492
nm with a tunable plate reader (Molecular Devices).
Before assay, the LMCAT cells were washed three
times with cold phosphate buffered saline (PBS) and
then lysed with the provided buffer. Cell extracts were
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spun at 23,000 X g and 4°C for 10 min to remove cellu-
lar debris.

The luciferase activity was measured with a micro-
plate luminometer (Labsystems, Helsinki, Finland) and
luciferin substrate (Promega, Madison, WI). The treated
C6LUC.B3 cells were washed twice with cold PBS and
then lysed with a passive lysis buffer. Cell extracts were
spun at 23,000 X g and 4°C for 10 min to remove cellu-
lar debris.

The total protein content for all cell extracts was
determined by bicinchoninic acid (BCA) assay (Pierce,
Rockford, IL) with a tunable plate reader. Protein con-
tent values were used to normalize CAT and lu-
ciferase concentrations for potential variations in cell
number.

GR Binding Assay

After incubation with drugs in 175-cm? flasks, the ad-
herent L929 cells were washed three to five times with
cold Hanks balanced salt solution (HBSS), scraped into
cold HBSS, and transferred to centrifuge tubes. The
cells were pelleted at 700 X g for 10 min, resuspended
in cold HBSS, and transferred to a new centrifuge tube.
The cells were then pelleted at 700Xg for 15 min and
stored at —80°C after removing the HBSS.

GR binding was determined using a previously de-
scribed in vitro cytosolic exchange assay (Miller et al.
1992). Cells were fractionated using a freeze/thaw pro-
cedure in a volume of 0.7 ml of binding buffer (10 mM
Tris, 1 mM EDTA, 20 mM molybdic acid, 5 mM dithio-
threitol, and 10% glycerol in double-distilled water, pH
7.4 at 4°), yielding an approximate final protein concen-
tration of 0.5-2.5 mg/ml of cytosol. After centrifugation
at 105,000 Xg for 60 min at 4°, the supernatant-cytosol
was added to incubation solutions containing radiola-
beled *H-Dex with or without unlabeled Dex. Bound ra-
diolabeled steroid was separated from unbound steroid
by filtration through minicolumns containing 1.25 ml of
LH-20 Sephadex (Pharmacia, Piscataway, NJ). Eluant
containing the bound fraction of steroid was added to
scintillation fluor (Ultima Gold, Packard, Meriden, CT),
and tritium *H-radioactivity was determined in a Wal-
lac LKB 1209 liquid scintillation counter (Uppsala, Swe-
den). Glucocorticoid receptor receptor binding was de-
fined as the amount of total *H-Dex (20 nM) binding
displaced by cold Dex (5 uM). The amount of residual
drug present in cell extracts was reduced by multiple
cold HBSS washes after drug treatment. Incubations
with ®H-Dex were carried out (at ~20-fold above the
GR Ky) at 4°C for 18-22 h to establish binding equilib-
rium between the radiolabeled and cold Dex. Specific
GR binding was expressed as fmol/mg cytosolic pro-
tein. Protein content for all samples was determined ac-
cording to the method of Bradford with use of BSA as a
standard as described previously (Miller et al. 1992).
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Statistical Analysis

All results are expressed as mean + SEM. Comparisons
among treatment groups were made using 1-factor or
2-factor analysis of variance (ANOVA). Post hoc com-
parisons of specific means were made using both con-
servative (Tukey) and powerful (Student’s t) tests of
significance. When both tests were significant only re-
sults of the Tukey test are reported. Non-parametric
tests of significance were used (e.g. Kruskal-Wallis one-
way ANOVA on Ranks, Mann Whitney Rank Sum Test,
Dunn’s Method) in cases where the data were not nor-
mally distributed. All tests of significance were 2-tailed
with an o level of .05.

RESULTS

As shown in Figure 1 (panels A and B), both Dex and
drug treatment (rolipram and DMI) had a significant
main effect on GR-mediated gene transcription in LM-
CAT cells (F; 150 = 183.7, p < .001 and F, 159 = 8.6, p <
.001, respectively). Rolipram alone led to a significant
increase in the activity of the CAT reporter gene com-
pared with vehicle-treated cells (p < .05) (Panel A),
whereas desipramine slightly but significantly de-
creased CAT activity p < .05). Treatment with rolipram
(10 uM) in combination with dexamethasone (Dex) re-
sulted in a significant enhancement of Dex (10 nM)-
induced GR-mediated gene transcription in LMCAT
cells (p < .01) (Panel B), similar to that seen (and previ-
ously reported) with desipramine (10 uM) (p < .01)
(Pariante et al. 1997). Dose response studies (Figure 2)
revealed a significant main effect of rolipram treatment
on CAT reporter gene activity (H = 26.7, df = 5, p <
.001) with rolipram alone leading to a dose dependent
increase in GR-mediated gene transcription that
achieved statistical significance beginning at a concen-
tration of 107"M (0.1 pM) (Figure 2, panel A). Rolipram
treatment also had a significant main effect on Dex-
induced GR-mediated gene transcription (Fy ;3 = 14.2,p <
.001) (Figure 3, panel A) with the combination of Dex
(InM and 10nM) plus rolipram (10 uM) leading to sig-
nificant enhancement in CAT activity (p < .05) (Figure
3, panel A). Of note, higher concentrations of Dex
(0.1pM-10pM) in combination with rolipram (10 uM)
revealed no enhancement of reporter enzyme activity.
Because cAMP pathways have been implicated in
the regulation of membrane steroid transporters such
as the p-glycoprotein multiple drug resistance (MDR)
pump (which pumps out synthetic steroids including
Dex and endogenous steroids including cortisol)
(Sharom 1997; Pariante et al. 2001a), we examined the
effects of rolipram on CAT activity in LMCAT cells
treated with corticosterone, which is not a substrate for
the pump (Sharom 1997; Pariante et al. 2001a). Similar
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Figure 1. Rolipram enhancement of basal and Dex-induced CAT activity in LMCAT cells. CAT activity was measured fol-
lowing 24 h treatment of LMCAT mouse fibroblast cells with vehicle, 10 wM rolipram, or 10 uM DMI alone (A) or in combi-
nation with 10 nM Dex (B). Relative CAT activity is the percent increase/decrease in CAT activity compared with vehicle
control. Values (MEAN =+ SEM) are the result of seven independent experiments. *significantly different from vehicle alone
using the Mann Whitney Rank Sum test or student’s t-test (p < .05) (A). *significantly different from Dex alone using the
Mann Whitney Rank Sum test (p < .01) (B). DMI = desipramine, Dex = dexamethasone.

to the results with Dex, rolipram had a significant main
effect on corticosterone-induced GR-mediated gene
transcription (F, ;4 = 4.8, p < .025), significantly enhanc-
ing the effects of corticosterone on LMCAT cell CAT ac-
tivity at lower concentrations (1 and 10 nM) of corticos-
terone (p < .05) but not at higher concentrations (0.1
uM-10 uM) (Figure 3, panel B).

To determine whether the effects of rolipram gener-
alize to other cell types (e.g. neural cells), rolipram
alone (10 M) or in combination with Dex (1 and 10nM)
was administered for 24 h to C6 glioma cells stably
transfected with a luciferase reporter gene construct
with an upstream MMTV promoter containing multiple
GREs. As in LMCAT mouse fibroblasts, both Dex and
rolipram treatment had a significant main effect on lu-
ciferase reporter gene activity (F,53 = 739.3, p < .001
and F, 53 = 14.6, p < .001, respectively). Compared with
vehicle treatment, rolipram (10 pM) treatment alone
significantly enhanced luciferase activity (p < .01), and
the combination of rolipram (10 uM) plus Dex (1 or 10
nM) led to significantly greater luciferase activity than
Dex alone (p < .01) (Figure 4).

To examine the receptor specificity of the effects of
rolipram on dexamethasone-induced CAT activity, the
effects of rolipram plus dexamethasone were measured
in the presence and absence of the glucocorticoid recep-
tor antagonist, RU486 (40 pM), in LMCAT cells. As
shown in Figure 5, both Dex and drug treatment (rolip-
ram and RU486) had a significant main effect on re-
porter gene activity (F;, = 88.0, p < .001 and F;,; =
28.8, p < .001, respectively). Relevant to the role of the

GR in rolipram-mediated effects, the addition of RU486
significantly reduced the effect of rolipram (10 wM)
plus dexamethasone (10 nM) on CAT activity (p < .001).
Interestingly, our previous studies have shown that 24
h incubation with RU486 slightly but significantly in-
creases GR-mediated gene transcription (Pariante et al.
2001b). Consistent with previous studies of activators of
protein kinase A, the addition of rolipram to RU486 sig-
nificantly enhanced this effect of RU486 compared with
RU486 alone (p < .005) (Nordeen et al. 1993).

To determine whether rolipram enhancement of GR-
mediated gene transcription was associated with an up-
regulation in GR protein, GR binding was determined
in L929 cells treated with rolipram alone, dexametha-
sone alone, or the combination. As shown in Figure 6,
there was a significant main effect of treatment condi-
tion on cytosolic GR binding (F; 35 = 5.2, p < .005). Glu-
cocorticoid receptor binding was significantly de-
creased in rolipram (10 wM)-treated 1929 cells compared
with vehicle-treated controls (p < .025). In addition, ro-
lipram (10 pM) plus Dex (10 nM) exhibited a greater re-
duction in cytosolic receptor binding compared with
vehicle than Dex treatment alone.

Finally, to examine whether rolipram influences the
effect of DMI on Dex-induced GR-mediated gene tran-
scription, rolipram (10 pM) and DMI (10 uM) were ad-
ministered to LMCAT cells alone and in combination
with Dex (10 nM). As shown in Figure 7, panel A, treat-
ment condition had a significant main effect on Dex-
induced GR-mediated gene transcription (H = 32.2, df =
3, p < .001). Rolipram synergized with DMI to lead to
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Figure 2. Dose dependent enhancement of basal CAT
activity by rolipram in LMCAT cells. CAT activity was mea-
sured in LMCAT mouse fibroblast cells following 24 h treat-
ment with various concentrations of rolipram. Relative CAT
activity is the percent increase in CAT activity compared
with vehicle control. Values (MEAN * SEM) are the results
of three independent experiments. *significantly different
from vehicle using Dunn’s method (p < .05). *significantly
different from vehicle using student’s t-test (p < .025).

an 8-fold increase in GR-mediated gene transcription
compared with Dex treatment alone (p < .05). Because
DMI effects on GR-mediated gene transcription have
been attributed to inhibition of the MDR pump (Pari-
ante et al. 2001a), we examined the impact of rolipram
plus DMI using corticosterone as the steroid ligand (10
nM). As noted above, corticosterone is not a substrate
for the pump. As shown in Figure 7, panel B, treatment
condition had a significant main effect on corticoster-
one-induced GR-mediated gene transcription (H =
23.78, df = 3, p < .001). Of note, however, only rolipram
exhibited a significant effect on corticosterone-induced
reporter gene activity (p < .05), and no further enhance-
ment was observed when DMI was added.

DISCUSSION

The results of this study demonstrate that in addition to
enhancing Dex-induced GR-mediated gene transcrip-
tion, the PDE type 4 inhibitor, rolipram, significantly in-
creased GR-mediated gene transcription in the relative
absence of glucocorticoid hormone. Rolipram effects on
Dex-induced GR-mediated gene transcription appear to
be mediated through the GR as demonstrated by rever-
sal of the effects following administration of the GR an-
tagonist, RU486. Finally, rolipram does not appear to
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Figure 3. Rolipram enhancement of Dex- and corticoster-
one-induced CAT activity in LMCAT cells. A. CAT activity
was measured in LMCAT mouse fibroblast cells following
24 h treatment with various concentrations of Dex alone or
in combination with rolipram (10 pM). Relative CAT activ-
ity is the percent increase/decrease in CAT activity in cells
treated with rolipram plus Dex compared with cells treated
with Dex alone at the indicated concentration. Values (mean *+
SEM) are the results of three independent experiments. *sig-
nificantly different from Dex alone using the Mann Whitney
Rank Sum Test or the student’s t-test (p < .05). B. CAT activ-
ity was measured in LMCAT cells following 24 h treatment
with various concentrations of corticosterone alone or in
combination with rolipram (10 pM). Relative CAT activity is
the percent increase/decrease in CAT activity in cells
treated with rolipram plus corticosterone compared with
cells treated with corticosterone alone at the indicated con-
centration. Values (mean * SEM) are the results of four
independent experiments. *significantly different from corti-
costerone alone using the Mann Whitney Rank Sum Test (p <
.05). Dex = dexamethasone.
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Figure 4. Rolipram enhancement of Dex-induced luciferase activity in stably transfected C6 glioma cells. Rat C6 glioma
cells were stably transfected with a combined MMTV promoter and luciferase reporter with a geneticin selection marker.
Luciferase activity was measured following 24 h treatment of C6 cells with various combinations of vehicle, 10 uM rolipram,
and 1 and 10 nM Dex. Relative luciferase activity is the percent increase/decrease in luciferase activity compared with vehi-
cle control. Values (mean + SEM) are the results of three independent experiments. *significantly different from the respec-
tive non-rolipram treated cells using student’s t-test (p < .01). Dex = dexamethasone.

act through GR upregulation. In fact, cytosolic receptor
binding studies indicated that rolipram, like other anti-
depressants, influences compartmentalization of the
GR by inducing GR nuclear translocation.

A number of studies have documented the wide-
ranging effects of rolipram on cellular activity in both
the immune system and the brain. Immunologic studies
have shown that rolipram has potent antiinflammatory
effects, exhibiting inhibition of the proinflammatory cy-
tokine, TNF-a, and providing protection from several
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autoimmune disorders (Ross et al. 1997; Laemont et al.
1999; Kung et al. 2000; Pang and Knox 2000, 2001; Sekut
et al. 1995; Eigler et al. 1998, Sommer et al. 1997). In-
deed, it has been suggested that rolipram may serve as
an effective therapy for human autoimmune disorders,
including multiple sclerosis (Sommer et al. 1997). Rele-
vant to the results of this study, glucocorticoids are a
mainstay in the treatment of autoimmune disorders
and also have well known antiinflammatory effects in-
cluding profound inhibition of TNF-a (Sternberg 2001).

Figure 5. Reversal of rolipram enhance-
ment of Dex-induced CAT activity by
the GR antagonist, RU486. CAT activ-
ity was measured in LMCAT mouse
fibroblast cells treated for 24 h with
various combinations of RU486 (40
uM), Dex (10 nM) and rolipram (10
uM). Relative CAT activity is the per-
cent increase in CAT activity compared
with vehicle control. Values (mean *
SEM) are the results of three indepen-
dent experiments. *significantly differ-
ent from vehicle control using a
student’s t-test or Mann Whitney Rank
Sum Test (p < .01). 'significantly differ-
ent from RU486 alone using a student’s
t-test (p < .005). ¥significantly different
from rolipram plus dexamethasone
0 0 using the Mann Whitney Rank Sum
Test (p < .001). Dex = dexamethasone.
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Figure 6. Reduction of cytosolic GR binding in L929 cells
by rolipram. L929 mouse fibroblast cells were treated for 24
h with vehicle, 10 nM Dex, 10 uM rolipram, or 10 nM Dex
plus 10 pM rolipram. Single-point binding data using [*H]-
dexamethasone are displayed as the percent of control (vehi-
cle). Results (mean * SEM) were pooled from three inde-
pendent experiments. *significantly different from vehicle
control using the student’s t-test (p < .025). **significantly
different from vehicle control using the Tukey test (p < .05).
Dex = dexamethasone.

Based on the capacity of rolipram to enhance GR func-
tion, one might wonder whether rolipram effects on in-
flammation are mediated in part through an effect on
the GR. At least two studies have addressed this possi-
bility, and both provide evidence consistent with the
data reported herein. In one study, the inhibitory effect
of rolipram on TNF-a induction during streptococcal
cell wall-induced arthritis was reversed by the GR an-
tagonist, RU486 (Laemont et al. 1999). In another study,
the glucocorticoid synthesis inhibitor, metyrapone, was
found to attenuate rolipram-induced inhibition of pul-
monary eosinophilia in allergic mice (Kung et al. 2000).
Complementing these studies are a number of reports
demonstrating comparable immunologic effects of glu-
cocorticoids and rolipram on cytokine induction (de-
creased TNF-a and increased interleukin (IL)-10 and IL-
4) as well as inflammation (e.g. reduced macrophage
activation and nitric oxide production) (Sekut et al.
1995; Eigler et al. 1998; Sternberg 2001; Abbas et al.
2000; Daynes and Araneo 1989; Yang et al. 1998; Beshay
et al. 2001; Swain et al. 1999; Gayo et al. 1998). More-
over, there have been two recent reports of synergistic
actions of glucocorticoids and rolipram on the release
of eotaxin, a potent eosinophil chemoattractant, from
human airway smooth muscle cells (Pang and Knox
2000, 2001).
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Figure 7. Potentiation of Dex-induced CAT activity follow-
ing co-treatment with rolipram and DML CAT activity was
measured in LMCAT mouse fibroblast cells treated with
various combinations of rolipram (10 pM), DMI (10 uM),
Dex (10nM) and corticosterone (10 nM). Relative CAT activ-
ity is the percent increase/decrease in CAT activity com-
pared with Dex (A) or corticosterone (B) alone. Values
(Mean = SEM) are the results of three independent experi-
ments. *significantly different from Dex alone or corticoster-
one alone using Dunn’s Method, Mann Whitney Rank Sum
Test or student’s t-test (p < .05). 'significantly different from
all other groups using Dunn’s method (p < .05). DMI =
desipramine, Dex = dexamethasone.

In addition to rolipram effects on the immune sys-
tem, there has been interest in rolipram and the cAMP
cascade in the regulation of nerve growth factors, espe-
cially the regulation of brain derived neurotrophic fac-
tor (BDNF) during antidepressant treatment (Nibuya et
al. 1996). This area of investigation (especially regard-
ing the use of PDE type 4 inhibitors like rolipram) has
yet to be extensively developed. Nevertheless, gluco-
corticoids and activators of the cAMP cascade includ-
ing B-receptor agonists, forskolin and 8-bromo-cAMP
have demonstrated similar effects on nerve growth fac-
tor (NGF), basic fibroblast growth factor (bFGF), and
BDNF when studied under conditions of acute expo-
sure (Colangelo et al. 1998; Hayes et al. 1995; Yama-
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moto et al. 1993; Grundy et al. 2001; Mocchetti et al.
1996). Interestingly, adrenalectomy abolished the ef-
fects of the B-receptor agonist, isoproterenol, on upreg-
ulation of NGF and bFGF mRNA in the brain, indicat-
ing that B-agonist effects on growth factor expression in
the brain are in part dependent on glucocorticoids
(Follesa and Mocchetti 1993). More study is needed to
determine the relative role of the effects of rolipram on
the GR in mediating longer term effects of rolipram on
nerve growth factors, especially in vivo where rolipram
enhancement of GR function may reduce prevailing
levels of hormone secondary to increased GR-mediated
feedback inhibition. Such rolipram-induced changes in
prevailing hormone may in turn influence growth fac-
tor expression.

Given the dual action of rolipram on the GR and the
immune system (which appear to be related), rolipram
in particular, and type 4 PDE inhibitors in general, may
be especially useful for targeting behavioral complica-
tions in patients with comorbid neuropsychiatric and
immunologic disorders including autoimmune disor-
ders and infectious diseases. Studies indicate a high
rate of depression in patients with a wide range of au-
toimmune disorders (Mahler 1992; Moran 1996). In ad-
dition, ample evidence indicates that patients with ma-
jor depression and/or autoimmune disorders exhibit
impaired GR-mediated feedback inhibition (glucocorti-
coid resistance) (Pariante and Miller 2001; Holsboer
2000; Miller et al. 1999). Consequences of this altered
feedback include unrestrained release of behaviorally
active neuropeptides including CRH and pro-inflamma-
tory cytokines including TNF-«, IL-1, and IL-6 (Pariante
and Miller 2001; Miller et al. 1999). Elevations in CRH
have been demonstrated in depressed patients, as have
elevations in proinflammatory cytokines, especially in
medically ill (i.e. cancer) patients who are depressed
(Pariante and Miller 2001; Owens and Nemeroff 1993;
Maes 1999; Musselman et al. 2001). Of note, pro-inflam-
matory cytokines are potent stimulators of CRH and
may contribute to impaired glucocorticoid-mediated
feedback through direct inhibitory effects on the GR
(Miller et al. 1999; Pariante et al. 1999). Moreover, pro-
inflammatory cytokines have been shown to contribute
to a syndrome of “sickness behavior,” which shares
many features in common with major depression in-
cluding anhedonia, fatigue, anorexia, altered sleep, and
impaired cognition (Kent et al. 1992). Thus, rolipram fa-
cilitation of GR-mediated feedback inhibition may
serve to reverse glucocorticoid resistance and restrain
both CRH and cytokine responses, thereby addressing
behavioral alterations in comorbid mood and immune-
related disorders. The synergism of rolipram with other
antidepressants (in this case desipramine), also sug-
gests that rolipram may be especially useful in combi-
nation with other antidepressant agents (especially
those that exhibit some activity on GR function).

NEUROPSYCHOPHARMACOLOGY 2002—VOL. 27, NO. 6

Our findings with rolipram are consistent with a rich
literature demonstrating that downstream elements of
the cAMP cascade can enhance GR function. More re-
cent studies have demonstrated that upstream activa-
tors of this cascade, including the B-agonists, epineph-
rine and norepinephrine, can also directly modulate GR
function (Eickelberg et al. 1999; Schmidt et al. 2001).
While studies have yielded conflicting results regard-
ing the capacity of these upstream factors to activate the
GR in the absence of steroid ligand (9,10), we provide
data indicating, that in contradistinction to the antide-
pressant desipramine, rolipram does appear to be able
to activate the GR in the absence of hormone (Pariante
et al. 1997). Nevertheless, since steroid stripping of se-
rum can never be absolute, it remains possible that ro-
lipram will only exhibit its effect in the presence of
some ligand, albeit a small amount.

Although the downstream signaling pathways re-
sponsible for rolipram’s effect on GR have yet to be eluci-
dated, clues regarding the mechanism of rolipram’s ef-
fects are provided by the data. First, recent work
indicates that the enhancement of Dex-induced, GR-
mediated gene transcription by antidepressants includ-
ing DMI, amitryptiline, clomipramine, paroxetine and
citalopram is mediated through inhibition of membrane
steroid transporters, including the MDR pump, which
pump steroids such as dexamethasone and cortisol out
of the cell (Sharom 1997; Pariante et al. 2001a). Inhibition
of the pump by antidepressants serves to increase intra-
cellular concentrations of steroid ligand and thus in-
crease steroid bioactivity. Corticosterone is not a sub-
strate for membrane steroid transporters and has been
used to reveal pump-related effects on GR function by
other antidepressants (Pariante et al. 2001a). Interest-
ingly, however, unlike other antidepressants, rolipram
was found to enhance corticosterone-induced GR-medi-
ated gene transcription., indicating that rolipram effects
on the GR are not mediated through inhibition of the
pump. Second, although increased GR expression could
potentially account for increased GR-mediated reporter
gene activity, no evidence of GR upregulation was
found. In fact, a decrease in cytosolic GR binding was ob-
served, suggesting that rolipram may act by enhancing
nuclear translocation of the receptor.

In summary, PDE type 4 inhibitors as embodied by
rolipram, appear to be an interesting group of pharmaco-
logic compounds whose spectrum of activity has been
extended herein to include the GR. Rolipram effects on
the GR appear to contribute to its effects on immune
function and may extend to more recent considerations
regarding nerve growth factors. Given its multiplicity of
activity (based in part on its direct action on signal trans-
duction), rolipram (and other type 4 PDE inhibitors) may
be especially useful in patients with both immunologic
and neuropsychiatric disorders, and may act synergisti-
cally with other antidepressant agents.
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