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Effects of Acute Metabolic Stress on Striatal 
Dopamine Release in Healthy Volunteers
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Several lines of evidence indicate that a variety of metabolic 
stressors, including acute glucose deprivation are associated 
with dopamine release. Pharmacologic doses of the glucose 
analogue, 2-deoxyglucose (2DG) cause acute glucoprivation 
and are associated with enhanced dopamine turnover in 
preclinical studies. In this study, we utilized [

 

11

 

C]raclopride 
PET to examine 2DG-induced striatal dopamine release in 
healthy volunteers. Six healthy volunteers underwent PET 
scans involving assessment of 2DG-induced (40 mg/kg) 
decrements in striatal binding of the D

 

2

 

/D

 

3

 

 receptor 
radioligand [

 

11

 

C]raclopride. Decreases in [

 

11

 

C]raclopride 

specific binding reflect 2DG-induced changes in synaptic 
dopamine. Specific binding significantly decreased 
following 2DG administration, reflecting enhanced 

 

synaptic dopamine concentrations (p 

 

5

 

 .02). The 
administration of 2DG is associated with significant striatal 
dopamine release in healthy volunteers. Implications of 
these data for investigations of the role of stress in 
psychiatric disorders are discussed. 
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Several lines of evidence suggest that dopamine is asso-
ciated with mechanisms underlying the neurobiologic
response to stress. In preclinical studies, increased
dopamine turnover and stress-induced striatal dopa-
mine release have been associated with a variety of
stress paradigms including restraint, foot and tail
shock, and exhaustion (Heyes et al. 1988; Dunn 1988;
Abercrombie et al. 1989; Carlson et al. 1991; Keefe et al.
1993; Chrapusta et al. 1997). In humans, plasma concen-
trations of the dopamine metabolite, homovanillic acid

(HVA) have been found to be increased with “examina-
tion stress” (Rauste-von Wright and Frankenhaeuser
1989) and physical activity (Kendler et al. 1983), though
not with other stressors, including continuous arithmetic
addition (Sumiyoshi et al. 1998). Using a video game par-
adigm, Koepp et al. (1998) demonstrated striatal dopa-
mine release with psychological stress in healthy volun-
teers.

Glucose deprivation provides a method to measure
the effects of metabolic stress on neurophysiology, in-
cluding dopamine release. In preclinical studies, hy-
poglycemia was associated with varied neurophysio-
logical effects, including increased cerebral blood flow
(CBF) (Bryan et al. 1994) and increased striatal concen-
trations of conjugated HVA (Cottet-Emard and Peyrin
1982). Several human volunteer studies have similarly
found insulin-induced hypoglycemia to be associated
with increased plasma HVA (Woolf et al. 1983) and in-
creased CBF (Della Porta et al. 1964; Neil et al. 1987;
Kerr et al. 1993; Tallroth et al. 1993). No studies, to date,
have assessed the effects of acute glucose deprivation
on cerebral dopamine function with human subjects, in

 

From the Experimental Therapeutics Branch, National Institute of
Mental Health (CMA, IE, NW, LK, DP), NIH, Bethesda, MD; and
Lilly Research Laboratories and Department of Psychiatry, Indiana
University School of Medicine, Indianapolis, IN (AB).

Address correspondence to: Caleb M. Adler, M.D., Department of
Psychiatry, University of Cincinnati, College of Medicine, 231
Bethesda Ave. Cincinnati, Ohio 45267–0559.

Received June 16, 1999; revised November 2, 1999; accepted
November 29, 1999.



 

546

 

C.M. Adler et al. N

 

EUROPSYCHOPHARMACOLOGY

 

 

 

2000

 

–

 

VOL

 

. 

 

22

 

, 

 

NO

 

. 

 

5

 

part because of methodological limitations with regard
to directly assessing in vivo dopamine turnover in hu-
man brain as well as reliably and safely inducing meta-
bolic stress in human volunteers.

2-Deoxyglucose (2DG) administration provides a
useful alternate paradigm with which to study the ef-
fects of glucoprivation. 2DG is a glucose analog that is
actively transported into cells via the same cellular
mechanisms as those used to absorb glucose. In the cell,
2DG is initially metabolized through a common glucose
pathway and is phosphorylated by hexokinase to
2-deoxyglucose-6 phosphate (2DG-6-P). 2DG-6-P is not
further metabolized, however, and accumulates intra-
cellularly. High concentrations of 2DG-6-P then inhibit
glucose-6-phosphate isomerase, blocking glucose oxi-
dation and stimulating a hypoglycemic-like response
(Wick et al. 1957; Tower 1958; Horton et al. 1973).

Preclinical and clinical studies show 2DG to increase
cerebral blood flow (CBF) to multiple cortical and sub-
cortical regions (Breier et al. 1993a; Elman et al. 1999).
Pharmacologic doses of 2DG produce a consistent
stress response in healthy volunteers, including robust
elevations of plasma cortisol, ACTH, and epinephrine
levels, as well as behavioral concomitants of heightened
anxiety (Goldstein et al. 1992; Breier et al. 1992; Elman
et al. 1998). Further, 2DG-induced elevations in dopa-
mine have been indirectly demonstrated in healthy vol-
unteers by increased plasma HVA (Breier et al. 1993b).

In several recent studies, we and others have em-
ployed a PET technique to assess the effects of pharma-
cological agents (Breier et al. 1997, 1998; Smith et al.
1998) or mental stress (Koepp et al. 1998) on striatal
dopamine release in vivo. This method involves utiliz-
ing the dopamine D

 

2

 

/D

 

3

 

 radioligand [

 

11

 

C]raclopride to
determine changes in specific binding, reflecting in-
creases in striatal dopamine release induced by a phar-
macological or psychological intervention. This tech-
nique was validated using pharmacological agents that
affect dopamine release (e.g., amphetamine) in nonhu-
man primates (Breier et al. 1997).

The purpose of this pilot study was to use this
[

 

11

 

C]raclopride/PET displacement method to measure
2DG-induced striatal dopamine release in healthy vol-
unteers. We hypothesized that 2DG would induce sig-
nificant striatal dopamine release.

 

MATERIALS AND METHODS 

Subjects

 

Six healthy male volunteers (mean age 

 

5

 

 33.2 years, SD 

 

5

 

5.1) participated in this 2DG/[

 

11

 

C]raclopride study. The
healthy volunteers were recruited from the NIH
healthy volunteer office and gave consent to this Insti-
tutional Review Board (IRB)-approved protocol. Volun-
teers were found to be free of psychiatric disorders on

clinical examination and on a Structured Clinical Inter-
view (Spitzer et al. 1990; First et al. 1997). Subjects were
in good health and underwent a medical evaluation
that included screening blood work and an EKG. A
structural MRI was obtained with each subject to rule
out anatomic abnormalities.

 

Clinical Protocol and Pharmacological Infusions

 

A bolus of 40 mg/kg of 2DG was administered forty
minutes after commencement of [

 

11

 

C]raclopride infu-
sion. The dose of 2DG was selected based on previous
clinical studies that demonstrated this dose produces a
consistent stress response including increased cortisol
and ACTH, as well as being safe and well tolerated
(Breier 1989; Elman and Breier 1997, Elman et al. 1998,
1999). Behavioral responses were examined in healthy
volunteers with a self-reporting anxiety visual analog
scale consisting of a demarcated line. Subjects made a
vertical intersecting mark at a point on the line to indi-
cate the degree of anxiety experienced. The rating in-
strument was explained by a research psychiatrist and
self-ratings were done for baseline (before the start of
the PET scan), peak behavioral effects, and 60 minutes
after completion of the scan (120 minutes after adminis-
tration). Subjects rated their peak 2DG-induced anxiety
following completion of the scan.

 

PET Scanning Protocol

 

Studies were conducted on a General Electric Advance
scanner at the NIH Clinical Center. Acquisitions were
done with the interplane septa retracted and a wide ax-
ial acceptance angle. Each scan yielded 35 planes 4.25
mm apart. The effective resolution of the reconstructed
images was 6 mm both axially and in-plane. Transmis-
sion scans were performed using two rotating 

 

68

 

Ge
sources and were used for attenuation correction.

Subjects were positioned in the scanner such that ac-
quired planes would be parallel to the orbital-meatal
line. Head movement was minimized with individually
fitted thermoplastic masks. Patches were applied over
the orbits to reduce incoming light. [

 

11

 

C]raclopride (3.3
to 8.0 mCi) was administered as a bolus followed by a
constant infusion over 100 min. The bolus dose was
57% of the total amount administered. Beginning with
the [

 

11

 

C]raclopride bolus, 27 scans were acquired over
the 100 min. period.

By infusing the [

 

11

 

C]raclopride, near-equilibrium
conditions can be reached before administration of a
pharmacologic agent, allowing a direct measurement of
the binding potential from the ratio of striatum/cere-
bellum-1. In previous studies in monkeys, equivalent
specific binding values were found using the conven-
tional bolus methods and the bolus/infusion technique
(Carson et al. 1997). The use of the bolus/infusion para-
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digm allows the measurement of baseline binding and
change in dopamine concentration in a single scan
without the need for intrascan blood sampling (Carson
et al. 1997). In addition, this paradigm facilitates inter-
pretation of post-2DG changes in the curve (Endres et
al. 1997).

 

Image Data Processing and Statistical Analysis

 

Image processing was performed with MIRAGE soft-
ware developed by the NIH PET center and all analysis
was done by a single individual. Images corresponding
to 0 to 5 minutes of raclopride infusion were added to-
gether to form a single “sum” image. Volumes of inter-
est (VOIs) were drawn over the cerebellum and on the
left and right striatum (caudate and putamen com-
bined). After visual inspection, these VOI’s were over-
laid onto their corresponding position in each of the 31
individual scans and samples (mean pixel values) were
generated for each VOI. Left and right striatal VOI’s
were averaged to a single striatal value. As noted, spe-
cific binding was calculated as follows: striatum/cere-
bellum-1.

Ratio data from five consecutive scans 20–40 minutes
after the [

 

11

 

C]raclopride bolus injection and immedi-
ately prior to 2DG administration (”baseline”), and five
consecutive scans 75 to 100 minutes post-[

 

11

 

C]raclo-
pride bolus injection (”post-2DG”) were averaged. The
effects of 2DG on raclopride binding were assessed us-
ing paired t-tests to compare baseline and post-2DG
specific binding.

The effects of 2DG on anxiety self-ratings were as-
sessed using a single factor, repeated measures
ANOVA that assessed the effects of time on rating
scores. Simple uncorrected t-tests were used for post-
hoc analyses between individual time points.

 

RESULTS

 

2DG administration induced a significant decrease in
[

 

11

 

C]raclopride specific binding from 2.78 

 

6

 

 0.28 (base-
line) to 2.63 

 

6

 

 0.34 (post-2DG) (t 

 

5

 

 3.31, df 

 

5

 

 5, 

 

p

 

 

 

5

 

 .02)
(Figure 1). Average percent change in specific binding
between baseline and post-2DG was 5.49%.

There was a significant time effect for self-ratings of
anxiety on the visual analog scale (F 

 

5

 

 9.32, df 

 

5

 

 2, 

 

p

 

 

 

,

 

.01) (Figure 2). Post-hoc t-tests showed ratings during
drug to be significantly greater than either before or a
lengthy period after 2DG administration.

Changes in specific binding were not significantly
correlated with the increase in anxiety self-ratings on
the visual analog scale (Spearman r 

 

5

 

 0.23, 

 

p

 

 

 

5

 

 .33).
2DG-induced decrements in specific binding did not
correlate with subject age (Spearman r 

 

5

 

 

 

2

 

 0.32, 

 

p

 

 

 

5

 

.54) and were not related to baseline binding (Spearman
r 

 

5

 

 

 

2

 

 0.31, 

 

p

 

 

 

5

 

 .54).

 

DISCUSSION

 

The results of this study demonstrated that glucoprivic
stress induced by 2DG administration is associated

Figure 1. The effects of 2-deoxyglucose
on [11C]raclopride striatal specific bind-
ing (striatum/cerebellum-1) in healthy
volunteers (n 5 6).
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with increased experience of subjective anxiety mea-
sured by a visual analog scale, as well as reductions in
[

 

11

 

C]raclopride specific binding in healthy volunteers,
probably reflective of 2DG-induced striatal dopamine
release. Our results are consistent with previous studies
indicative of increased dopamine turnover, as mea-
sured by indirect peripheral indices, with glucoprivic
stress in healthy volunteers (Cottet-Emard and Peyrin
1982; Woolf et al. 1983; Breier et al. 1993b). Our findings
are also consistent with observations of striatal dopa-
mine release in healthy volunteers using a very differ-
ent, psychological, stress paradigm (Koepp et al. 1998).

The magnitude of decrements in specific binding as-
sociated with 2DG administration is somewhat lower
than we have previously observed with either amphet-
amine (15.5%) (Breier et al. 1997) or the NMDA antago-
nist, ketamine (11.3%) (Breier et al. 1998), implying that
while glucoprivic stress stimulates striatal dopamine re-
lease, it does not do so as robustly as either direct
dopaminergic or indirect glutamatergic pharmacologic
stimulation. Observations that stress activates brain cate-
cholamine systems (Thierry et al. 1968; Dunn 1988; Roth
et al. 1988; Kalén et al. 1989; Nisenbaum et al. 1991) and
increases levels of excitatory amino acids (Moghaddam
1993), suggest several possible alternate mechanisms for
2DG-induced striatal dopamine release. Further studies
will be necessary to identify specific pathways activated
by neural glucoprivation. The prominent variability in
baseline and post-2DG specific binding is consistent with
previous studies utilizing this technique to study the ef-
fects of amphetamine and ketamine.

A few caveats need to be considered in interpreting
our data. The degree to which 2DG-related glucopriva-

tion is comparable to other types of stress is not yet en-
tirely clear. While 2DG administration did induce anxi-
ety measured with a self-rating scale, increased anxiety
with 2DG did not correlate with degree of striatal
dopamine release. While sensitive, the self-rating scale
may be susceptible to influence by expectations. More-
over, the necessity of requiring subjects to recall their
peak anxiety experience after the scan was complete
may have furthered affected findings. Nonetheless,
2DG appears to influence many neurophysiological
systems in ways that are similar to the effects of envi-
ronmental stress. The lack of correlation may be related
to the small sample. Further, the small sample size and
single gender of the study population raise separate is-
sues of generalizability to the population as a whole.
While our findings should be considered preliminary,
the power was sufficient to detect significant effects
with 2DG administration. Another issue is the potential
effect of a 2DG-induced increase in cerebral blood flow
on determination of specific binding. While Elman et al.
(1999) observed increased basal ganglia blood flow to
be associated with 2DG administration, blood flow
peaked at 20 minutes after administration. By 40 min-
utes after administration, cerebral blood flow was re-
turning to normal and by 60 minutes was essentially at
baseline. Time points used to measure post-2DG spe-
cific binding in this study were obtained from 35 to 60
minutes after 2DG administration when any putative
increase in cerebral blood flow was returning to nor-
mal. Moreover, the raclopride bolus/infusion method-
ology employed here is relatively resistant to blood
flow changes (Logan et al. 1994; Carson et al. 1997; En-
dres et al. 1997).

Figure 2. The effects of 2-deoxyglucose (2DG) on anxiety self-rating on a visual analog scale (n 5 6).
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These data suggest that the [

 

11

 

C]raclopride displace-
ment paradigm may be a useful tool in broadening our
understanding of physiological and behavioral re-
sponses to acute stress. Moreover, these data may pro-
vide a neurophysiological underpinning for observa-
tions that some psychiatric populations may be
particularly sensitive to environmental stress (Gruen
and Baron 1984; Hultman et al. 1997). Pathologic re-
sponse to stress in schizophrenic patients might be re-
lated to hypothesized decrements in tonic striatal
dopamine release in this population leading to stimu-
lus-induced supranormal dopamine release (Grace
1991). Breier’s (1993b) findings that 2DG administration
is associated with greater increases in plasma HVA lev-
els in schizophrenic patients than in healthy controls
are consistent with this suggestion.

Our preliminary findings demonstrate that 2DG-
induced glucoprivation is associated with a change in
striatal dopamine synaptic concentration in healthy vol-
unteers. Further studies comparing these findings with
2DG-induced dopamine changes in cohorts of psychiat-
ric patients might help to clarify the importance of stri-
atal dopamine pathways in the pathological response of
some psychiatric patients to stress, particularly in ill-
nesses such as schizophrenia for which dopamine dys-
regulation is thought to play an important role.
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