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The use of animal models for the study of psychosis and new 
treatment development is inadequate in assessing target 
psychotic symptoms because animals lack an ability to use 
language. Despite this deficiency, new antidopaminergic 
antipsychotic drugs have still become available. However, 
even these new antipsychotics, although substantially better 
than the conventional compounds, do not “cure” psychosis 
or normalize schizophrenic symptoms. The need for new 
treatment strategies is apparent. The value of a human 
model, where language is available to describe target 
symptoms, is clear. Currently, there is an opportunity to 
use the mild psychotomimetic symptoms induced by a 
minimal dose of ketamine in normal humans as a model of 
psychosis. The mental symptoms in this model resemble 
some of the symptoms of schizophrenia, suggesting the 

additional possibility that parallel mechanisms of psychosis 
may occur in schizophrenia and in a ketamine state, 
creating a potentially viable psychosis model for 
pathophysiology. This paper includes arguments in support 
of this human model’s application. Several potential 
outcome measures that can be used to evaluate potentially 
novel antipsychotics are described. This model has the 
potential for identifying novel therapeutics because it does 
not primarily utilize the dopaminergic system. Further 
delineation of ketamine pharmacology in humans is pivotal 
to the eventual application of this ketamine model in drug 
development.
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Because schizophrenia is an illness without known
pathophysiology or etiology, no opportunity exists as
yet to validate animal models of the illness. Schizophre-
nia models for antipsychotic drug development, espe-
cially if aimed at new strategies, are also limited. De-
spite this situation, we do have new drugs to treat
schizophrenia and other psychoses, albeit all derived
from the antidopaminergic model (Lahti et al. 1996).

This has happened largely through identification of the
mechanisms of conventional drug action and the design
of new drugs based on the characteristics of past suc-
cesses. Models for this standard approach begin with
CNS-receptor affinity screening; desirable affinities in-
clude the D

 

2

 

-dopamine and the 5-HT

 

2

 

-serotonin recep-
tors, with consideration lately being given to the 5-HT

 

lA

 

,
the 

 

a

 

1

 

, and the histamine

 

1

 

 receptors. D

 

2

 

-dopamine affin-
ity is considered essential even though alternative ap-
proaches are being sought (Kehne et al. 1996; Lahti et al.
1998; Leysen et al. 1994; Schotte et al. 1996). Beyond re-
ceptor profiling, drug candidates are evaluated in ani-
mal behavioral and biochemical models that have pre-
dicted good clinical drug action in the past.

Despite its successes, several issues suggest that we
need to move beyond this standard approach. Schizo-
phrenia is a complex illness and may not represent a
single disease entity (Andreasen et al. 1992; Carpenter
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and Buchanan 1994; Kirkpatrick and Buchanan 1990;
Liddle et al. 1992). Moreover, it is an illness in which
language is the medium for expressing mental symp-
toms, making animal models inadequate. At present, a
family of animal models is used to characterize poten-
tial antipsychotic action (Bymaster et al. 1999). The con-
cept of a “partial” model (i.e., one that might predict a
segment of drug action, even a critical action, but is not
sufficient by itself for full schizophrenia modeling)
should be pursued based on our growing knowledge of
schizophrenia.

Current data suggest that the symptoms of schizo-
phrenia cluster together and express themselves as a
group in individual patients. Positive symptoms
(thought disorganization, hallucinations, delusions,
paranoia), negative symptoms (thought paucity, psy-
chosocial retardation, lack of motivation), and cognitive
dysfunction (short-term memory impairment, atten-
tional dysfunction, poor executive function) are the pri-
mary altered dimensions of cerebral function (An-
dreasen et al. 1992; Carpenter and Buchanan 1994;
Liddle et al. 1992). Treatment for positive symptoms
can be accomplished with antidopaminergic antipsy-
chotics; however, the conventional drugs do not effec-
tively treat negative manifestations or cognitive dys-
function. Even the new antipsychotics leave many
aspects of the illness poorly treated. One idea being
considered and tested is that a different drug treatment
is needed for each domain of dysfunction in schizo-
phrenia (Carpenter et al. 1993). Different aspects of
schizophrenia might be mediated through and pharma-
cologically treated by different neurotransmitter or ce-
rebral systems. In addition, the concept of a human
model of schizophrenia deserves consideration, even
given its inherent difficulties. Until now, disease mod-
els have been synonymous with animal models of
schizophrenia despite the constraints of symptom ex-
pression. A human model would complement and ex-
tend the usual animal characterization, with the advan-
tage of direct psychosis evaluation.

 

EXISTING ANIMAL MODELS FOR PSYCHOSIS

 

Evaluating animal models for face and construct valid-
ity is easier when the model is an exact replica of the
human illness, a situation that can be obtained in dis-
eases such as high blood pressure or stroke, in which
etiology or pathophysiology can be mimicked. In psy-
chiatric illnesses, however, the task is more difficult be-
cause of the obscure pathophysiology of these illnesses.
In schizophrenia, the task is even more difficult because
the primary symptoms are cognitive and are expressed
through human language. To date, there is no practical
human psychosis model. McKinney and Bunney (1969)
proposed basic criteria for a model of a human brain

disease that include the following: (1) the model is pro-
duced by a similar etiology as the illness; (2) the model
resembles the illness in manifestations or symptomatol-
ogy; (3) the underlying pathophysiology is similar to
the human disorder; and (4) the responses to therapeu-
tic treatments are similar. Several updates on these cri-
teria have been proposed without critically changing
these simple early concepts (Weiss and Kilts 1995). The
more a model resembles the disease (in this case schizo-
phrenia) along the parameters of these criteria, the
more valid the model is likely to be.

The situation of inadequate animal models discour-
ages many pharmaceutical teams focused on the brain
from raising significant novel efforts in the antipsy-
chotic area. Moreover, because the models are not “ho-
mologous” (i.e., do not mimic the human pathology), it
is difficult to use them to study disease mechanisms.
Despite these very significant limitations, it is clear that
many drug development programs have been quite
successful, even though they have been based on exist-
ing animal models (Beasley et al. 1997; Marder et al.
1993; Zimbroff et al. 1997). Although new approaches
to drug development in schizophrenia are needed, be-
cause of only partial action of even the best antipsy-
chotics, they are rarely pursued. Moreover, schizophre-
nia is observed around the world with relatively high
frequency, and characteristically lasts a lifetime; hence,
medical need is among the highest of all human ill-
nesses. Where are we with animal models? Which mod-
els are the most reliable in predicting antipsychotic ac-
tion? Which will predict novel therapeutic directions?

 

Conditioned Avoidance Responding

 

Conditioned avoidance responding is the classic behav-
ioral antipsychotic drug screen. It is a part of virtually
every drug development package in psychosis. Tradi-
tional and new antipsychotics (except clozapine) inhibit
conditioned avoidance responding in rats at a dose that
does not interfere with escape behavior (Cook and Cat-
ania 1964; Sanger 1985; Worms et al. 1983).

 

Catalepsy

 

The inability to correct an externally imposed body po-
sition is called catalepsy. Once used as a positive
screening test for neuroleptics, catalepsy is now used as
a “rule-out” screening test.

 

Prepulse Inhibition (PPI)

 

Schizophrenics and some of their family members lack
the ability to have a weak sensory (e.g., auditory) stim-
ulus, presented before a stronger stimulus (loud tone),
modify the startle reaction to the loud tone (Braff and
Geyer 1990). A homologue of this schizophrenia charac-
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teristic has been developed in the laboratory rat and
fulfills many of the animal model criteria for human
PPI reviewed above.

 

Depolarization Blockade

 

All antidopaminergic antipsychotics quiet spontaneous
firing of midbrain dopamine cells with chronic drug
treatment by producing depolarization blockade (Grace
et al. 1997). Traditional antipsychotics generate this re-
sponse in both A9 (motor) and A10 (limbic) dopamine
cell body areas, but several of the new antipsychotics
demonstrate this action only in the A10 neurons, thus
putatively limiting their extrapyramidal symptoms (EPS).

 

c-fos MRNA or Fos Protein Activation Pattern

 

Delineation of the anatomic distribution of drug action
may be informative about which cerebral behaviors a
drug will effect. A restriction of drug action to the lim-
bic cortex, especially to anterior cingulate regions with-
out effects in the dorsal striatum, may be a model for a
drug with antipsychotic but not parkinsonian action in
the clinic (Robertson et al. 1994).

Several additional and even critical animal models
are commonly used to further characterize antipsy-
chotic drug action. Blockade of 

 

amphetamine-induced hy-
permotility

 

 but not stereotypy would suggest that a drug
has activity at limbic but not motor regions of the brain
(Arnt 1995). The action of an antipsychotic in the 

 

Paw
Test

 

 (Ellenbroek and Cools 1988), the ability of the agent
to inhibit hindlimb retraction more potently than fore-
limb retraction, has been empirically associated with
the actions of newer (low EPS) drugs.

The failure of an antipsychotic to produce dystonias
in the 

 

neuroleptic-sensitized nonhuman primate

 

 test sug-
gests reduced potential for EPS in the clinic, a model
with homologous and empirical support (Casey 1996).

 

Social isolation

 

 in the animal, especially when induced
by phencyclidine (PCP), is used theoretically to predict
activity against negative symptoms (Sams-Dodd 1999).

 

Hippocampal ablation

 

 (ventral) in the rat was developed
as a homologous animal model to mimic the putative
hippocampal pathology of schizophrenia and is associ-
ated with an increase in stimulated-dopamine release
only after rat puberty (Weinberger 1995). 

 

Purposeless
chewing movements

 

 with chronic antipsychotic treatment
has been proposed as an animal model of tardive dys-
kinesia; hence, this model would be a negative screen in
drug development (Tamminga et al. 1990; Waddington
1990). A 

 

hyperglutamatergic model

 

 of schizophrenic
symptoms has been proposed based on perfusate anal-
ysis of rat prefrontal cortex showing activation of
dopamine release following NMDA-antagonist admin-
istration and attenuation of this effect by pretreatment
with an AMPA-receptor antagonist (Moghaddam et al.

1997) or a group II metabotropic glutamate receptor ag-
onist (Moghaddam et al. 1998).

Chronic PCP administration in the nonhuman pri-
mate produces behaviors and neurochemical changes
consistent with a schizophrenia-like process; evidence
suggests that these PCP-induced changes are mediated
through the medial and lateral frontal cortex (Jentsch
and Roth 1999). These are the major modeling tools rou-
tinely used in animals to characterize drug action in hu-
mans for the therapeutic aim of antipsychotic action.
No investigator would call these sufficient or even ade-
quate, and all would be pessimistic about greatly im-
proving these models in animals. This is because scientists
need human response machinery to assess critical drug
response features for schizophrenia. The human model
of psychosis suggested here may extend pharmacologic
characterization in evaluating new drug action.

 

RATIONALE FOR THE NMDA-SENSITIVE 
GLUTAMATE ANTAGONISM MODEL

 

PCP is the prototypic noncompetitive NMDA-receptor
antagonist. It was studied for its mechanism of psycho-
tomimetic action for many years after its initial behav-
ioral characteristics were described (Domino and Luby
1981; Luby et al. 1959). PCP was always noted to have
behavioral actions that in some ways approximated
some of the signs and symptoms of schizophrenic psy-
chosis (Javitt and Zukin 1991; Pearlson 1981). Unlike
other psychotomimetic drugs (Angrist and Gershon 1970;
Bell 1965; Griffith et al. 1972), PCP in a dose-dependent
manner, can produce a range of classic psychotic phe-
nomena in normal individuals, including hallucina-
tions, delusions, and thought disorder. Early uncon-
trolled data suggested that PCP might exacerbate
symptoms in schizophrenics, not just add a psychoto-
mimetic action experience to their own symptoms
(Luby et al. 1959). When Anis et al. (1983) reported that
PCP and its congeners blocked the action of NMDA on
ion flow through the NMDA-sensitive glutamate recep-
tor in the brain, this action became the mechanism of in-
terest in explaining behavioral actions of PCP. Soon, a
PCP receptor was identified and characterized and, there-
after, its location within the NMDA-gated glutamate
ionophore was further characterized (Zukin and Zukin
1979; Zukin et al. 1983). MK-801, its selective agonist,
has made selectivity possible in the study of activation
of this receptor site. Moreover, because PCP has a high
affinity for its receptor, its actions mediated at this site
are low-dose actions (Javitt and Zukin 1991), hence dis-
criminable from its broad pharmacologic profile.

More recently, reports of psychotomimetic actions of
other competitive NMDA antagonists suggest that any
blockade of this ionophore will cause psychotomimetic
side effects (Grotta et al. 1995; Kristensen et al. 1992).
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These observations have supported the idea that any
drug or disease that reduces glutamatergic transmis-
sion at the NMDA site will be associated with psycho-
sis. We have used the McKinney-Bunney “model” crite-
ria to evaluate a potential ketamine model for psychosis
in healthy humans (McKinney and Bunney 1969). The
first model criterion, etiology, is not helpful because
there is no known mechanism for either schizophrenia
or ketamine-induced psychosis. The second criterion,
symptomatology, is applicable; data support a ket-
amine interview in humans as a model of psychosis for
the reasons elaborated above and described more fully
below. Whether a ketamine preparation has a biochem-
istry that matches psychosis is an unanswered question
because we do not know the pathophysiology of psy-
chosis. The third criterion, whether the pathophysiol-
ogy of the model matches the human condition, re-
quires data that we and others are in the process of
collecting. Haloperidol blocks endogenous psychosis
but does not affect ketamine-induced psychosis (Lahti
et al. 1995b); clozapine seems to block at least some of
the psychotomimetic actions of ketamine in humans
(Malhotra et al. 1997a). Moreover, several agents, when
tested in humans, block some of the ketamine-induced
symptoms in normal individuals [e.g., lamotragine
(Anand et al. 1999) and guanabenz (Newcomer et al.
1999b)]. Thus, acute ketamine blockade may be a partial
model of psychosis for positive symptoms and perhaps
cognitive dysfunction and contribute to identifying an
additional aspect of antipsychotic action over conven-
tional drugs. The fact that haloperidol does not block
the ketamine psychotomimetic action could mean that
ketamine is acting to produce psychosis in humans
closer to its core pathology than is affected by dopa-
mine. Clearly, further work is needed in characterizing
ketamine pharmacology in humans.

We propose that the ketamine model, described in
detail below, be considered for a “partial” human
model for psychosis. The ketamine model suggests
novel and superior therapeutic characteristics of a po-
tential new antipsychotic and can be used along with
the usual laboratory receptor affinity and traditional
animal model screens.

 

DEVELOPMENT OF A HUMAN MODEL OF 
PSYCHOSIS WITH KETAMINE

 

Background work on this preparation began in our lab-
oratory with a dose-response study of the action of ket-
amine inducing psychotic symptomatology in healthy
humans (Lahti et al. 1997). This study was also carried
out in schizophrenic volunteers. All participants were
informed about all aspects of the study, including the
probability that they would experience psychotic symp-

toms. Symptom experiences from previous participants
were shared with volunteers participating in the study.
After the informational process, all potential volunteers
were evaluated to ensure their full understanding of the
experiment. Whenever available, family members of
the patient volunteers were involved in the informed
consent process. The ketamine procedure was carried
out in a quiet room with reduced stimulation and in a
relaxed setting. Each volunteer underwent four sessions,
one with each dose of 0.1, 0.3, or 0.5 mg/kg ketamine,
or placebo given in random order and in a double-blind
manner. Ketamine and placebo were administered in-
travenously over 60 seconds. Symptoms were rated at
baseline, and at 20, 90, and 180 minutes after drug; pa-
tients were debriefed 24 hours later. The Brief Psychiat-
ric Rating Scale (BPRS) (Overall and Gorhain 1962) and
the Psychosis Change Scale (PCS) (Tamminga and
Schaffer 1979) were used to rate responses. Blood oxy-
gen saturation and usual vital signs were assessed reg-
ularly.

Ketamine produced a dose-dependent increase in
psychotic symptoms in healthy human volunteers. The
magnitude of the responses was similar in healthy and
schizophrenic volunteers, differing only in that schizo-
phrenics started with a higher psychosis at baseline.
The healthy volunteers had an increase in both positive
and negative symptoms (Figure 1), whereas the schizo-
phrenic persons had an increase in only the positive
symptoms. Normal volunteers experienced illusions
and distortions in the visual, auditory, and somaes-
thetic domains; schizophrenic patients reported similar
phenomenon as well as frank hallucinations, both un-
formed (e.g., popping sounds) and formed (e.g.,
voices), and delusional beliefs. Both groups experi-
enced thought disorganization. These symptoms lasted
from 20 to 40 minutes, with an average of 19 

 

6

 

 6.4 min-
utes in healthy volunteers and 31.8 

 

6

 

 21.2 minutes in
schizophrenic volunteers.

Perhaps the most striking feature of the response to
ketamine in the patient group was that approximately
75% of patients experienced symptoms reminiscent of
their acute symptoms both in content and extent.
Whether their primary symptoms were a particular
paranoid delusion or a set of hallucinations on a theme,
it was those symptoms that were mildly stimulated in
the patient group. Schizophrenic volunteers were tested
both on and off haloperidol (

 

n

 

 

 

5

 

 6); ketamine demon-
strated the same psychotomimetic action under both
conditions, with the off-haloperidol volunteers starting
from a higher psychosis baseline (Figure 2).

To understand the areas of the brain involved in this
behavioral response, we evaluated regional cerebral
blood flow (rCBF) in both volunteer populations after a
0.3-mg/kg dose of ketamine. The 0.3-mg/kg dose was
selected because it was sufficient to give a clear signal
in both populations with only mild psychosis. rCBF
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scans were collected using PET with H

 

2

 

 

 

15

 

O. Three scans
were collected at baseline and repeated at 10-minute in-
tervals after ketamine administration for 60 minutes.
Scan data were analyzed using SPM96 (Friston et al.
1994).

The data presented here represent the subtraction of
the average baseline scan from an average 6- to 16-
minute scan. Both healthy and schizophrenic volun-
teers showed the same distributions and magnitudes of
activation/inhibition; therefore, the data here are
pooled. Ketamine increased rCBF most prominently in
the anterior cingulate cortex, with the activation ex-
tending into the medial frontal areas bilaterally (Figure
3). Activation was also significant in the right inferior
frontal cortex in a smaller area. rCBF was inhibited in
cerebellum, throughout the cerebellar cortex bilaterally.
Each cerebral area of activation and inhibition demon-
strated its own time course of response with a distinc-
tive dynamic pattern (Figure 4). In two cerebral regions,
the anterior cingulate gyrus and the inferior frontal gy-
rus (Figure 5), a significant linear correlation emerged
between the change in psychosis and rCBF activation in
response to ketamine. Several areas of activation/inhi-

bition demonstrated a dose-sensitive rCBF response
across 0.1-, 0.2-, and 0.3-mg/kg dose curve, including
the anterior cingulate, premotor, and medial prefrontal
cortex.

Evidence suggests that ketamine produces its psy-
chotomimetic action in humans through blockade of
the NMDA-sensitive glutamate ionotrophic receptor.
The effective doses causing the psychotomimetic re-
sponse are very low, and ketamine as well as PCP has a
high affinity for the NMDA receptor (Javitt and Zukin
1991). Moreover, several competitive antagonists of the
NMDA receptor are associated with a similar psychoto-
mimetic action. These NMDA antagonists have been
tested in humans under experimental conditions be-
cause of their potential blockade of neurodegeneration
after stroke and seizures. MK-801 [(

 

1

 

)-5-methyl-10,11-
dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine male-
ate], CGS 19755 [cis-4-[phosphonomethyl]-2-piperidine
carboxylic acid] (Grotta et al. 1995), and CPP [3-(2-car-
boxypiperazin-4-yl)propyl-l-phosphonic acid] (Kristensen
et al. 1992) all induced psychotomimetic symptoms in
humans.

Full pharmacologic characterization of the ketamine-

Figure 1. Mental changes 20 minutes after ketamine injection in normal volunteers (n 5 7) after three doses of ketamine
(0.1, 0.3, and 0.5 mg/kg) and placebo (pbo). There was a dose-related increase in the BPRS Psychosis score for all three ket-
amine doses and BPRS Withdrawal score for the two higher ketamine doses. The BPRS Anxiety score was significantly
increased only for the higher ketamine dose (0.5 mg/kg).
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induced behaviors and rCBF changes will be critical to
testing the extent of its further application. We have be-
gun studying the blockade of ketamine-induced behav-
ioral outcomes with a conventional antipsychotic (halo-
peridol) and a newer antipsychotic (olanzapine).
Healthy and schizophrenic volunteers respond simi-
larly, so healthy subjects are routinely selected. Halo-

peridol does not block ketamine-induced behaviors at a
dose of 10 mg. Olanzapine evaluations are still incom-
plete; however, preliminary data suggest that low doses
(5 mg) of olanzapine do not block ketamine-induced
symptoms of psychosis (Lahti et al. 1999). The experi-
ment is being extended to higher doses of olanzapine
based on our knowledge that additional neurochemical

Figure 2. Changes in BPRS psychosis score 20 minutes after three doses of ketamine and placebo in schizophrenic patients
(n 5 6) who received challenges both on (ON haloperidol) and off (OFF haloperidol) haloperidol. Neither the increase in
BPRS Psychosis score at 20 minutes nor the BPRS Psychosis score at baseline was significantly different between conditions,
indicating that haloperidol did not block ketamine-induced psychosis.

Figure 3. Transverse, sagittal, and coronal statistical parametric maps derived from 15O-labeled water PET scans in normal
and schizophrenic volunteers (n 5 17). These maps indicate the difference in rCBF obtained before and 6 to 16 minutes
(average of two scans) after ketamine bolus injection (0.3 mg/kg). Ketamine-induced rCBF stimulation is seen in anterior
cingulate (extending to medial frontal areas bilaterally) and right inferior frontal cortical area, and rCBF suppression is seen
throughout the cerebellar cortex bilaterally.
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actions should appear at higher doses (Kroeze and Roth
1998).

Data from other laboratories expand these observa-
tions. Several investigators have evaluated the effect of
ketamine in normal (Krystal et al. 1994; Malhotra et al.
1996) and schizophrenic volunteers (Malhotra et al.
1997b). Despite differences in methods of ketamine ad-
ministration (bolus vs. slow infusion), there is a consen-
sus across laboratories that ketamine produces a close
symptom representation of the positive symptoms of

schizophrenia in healthy humans. Malhotra et al.
(1997b) reported a high degree of similarity between
ketamine-induced psychosis and a patient’s own psy-
chotic symptoms. Various studies have reported physi-
ologic/mental abnormalities produced in healthy hu-
mans by ketamine that mimic changes found in
schizophrenia, including changes in several measures
of cognition (Harborne et al. 1996; Krystal et al. 1994;
LaPorte et al. 1996; Malhotra et al. 1996; Newcomer et
al. 1999a), eye tracking (Radant et al. 1998; Weiler et al.

Figure 4. Regional change in CBF over the first 66 minutes following 0.3 mg/kg bolus ketamine in normal volunteers (n 5
7). Baseline rCBF scans and seven scans at 10-minute intervals after drug were obtained. Group average images were con-
structed at each time point, the maxima of any significant cluster was grown to a 6 3 6 3 12 voxel sample volume; an aver-
age adjusted rCBF was calculated and plotted for each time point. rCBF in anterior cingulate (3 maxima) showed a biphasic
pattern with early and late flow increases. The inferior frontal area showed a single activation between 6 and 16 minutes. All
maxima (4) showed relative flow reduction monophasically in cerebellum.
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1997), and PPI (Duncan et al. 1997). Although we need
to evaluate whether the mechanisms of these ketamine-
induced impairments in healthy humans are the same
mechanisms operative in schizophrenia, these studies
may provide a way to associate glutamatergic abnor-
malities with the signs and symptoms of schizophrenia.

Imaging studies with ketamine have also been per-
formed in other laboratories to describe brain-acti-
vation patterns following ketamine administration in
schizophrenic (Lahti et al. 1995a) and normal volun-
teers (Breier et al. 1997; Vollenweider et al. 1997) and to
evaluate in vivo glutamate-dopamine interactions
(Breier et al. 1998). Vollenweider et al. (1997), using PET
with [

 

18

 

F]fluorodeoxyglucose (FDG), reported frontal
cortex and cingulate cortex metabolic activation with
ketamine in normal volunteers. Also using PET/FDG,
Breier et al. (1998) reported frontal activation in normal
volunteers in response to ketamine. In a displacement
PET study with [

 

11

 

C] raclopride, Breier (1997) reported
that ketamine decreased specific D

 

2

 

-dopamine binding

in the basal ganglia of healthy volunteers, indicating
that at least in some CNS regions, dopamine release is
produced by ketamine administration. It is not known
whether this interaction is related to the induction of
symptoms.

Pharmacological blockade of ketamine is also now
being evaluated in different laboratories using various
agents. Clozapine seems to mildly but significantly
blunt ketamine-induced psychosis in schizophrenic
volunteers (Malhotra et al. 1997a). Moreover, clozapine
seems to reduce the ketamine-induced rCBF change in
anterior cingulate cortex (Vollenweider and Leenders
1999). Lorazepam does not block ketamine-induced psy-
chotic symptoms but, it significantly blunted anxiety
ratings associated with ketamine administration in nor-
mal volunteers (Krystal et al. 1998). Preliminary data in-
dicate that other compounds, including the antiepilep-
tic lamotrigine, reduce ketamine-induced positive and
negative symptoms in normal volunteers, hypotheti-
cally, through an ability to inhibit presynaptic release of

Figure 5. Statistical Parametric Mapping (SPM96) was used to generate pixel by pixel linear regression correlation between
BPRS Psychosis change score (obtained prior to PET procedure and 20 minutes postdose) against rCBF changes (subtraction
of baseline scans and average of 6 to 16 minute scans) in normal and schizophrenic volunteers (n 5 22). Both the anterior cin-
gulate and inferior frontal gyrus demonstrate a significant linear correlation between the ketamine-induced change in psy-
chosis and rCBF activation.
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glutamate (Anand et al. 1999). The 

 

a

 

2

 

 agonist guana-
benz, is also being investigated in normal volunteers
(Newcomer et al. 1999b).

This human ketamine model and its homologue in
the rat with PCP and immediate early gene (IEG) acti-
vation have already suggested cerebral areas poten-
tially important to psychosis. Analysis of the ketamine
activation/inhibition patterns and the regions where
rCBF and ketamine-induced behaviors correlate indi-
cates CNS regions mediating specific ketamine effects.
The localizing data from this ketamine model have al-
ready been valuable within our own laboratory in di-
recting regional postmortem studies in healthy and
schizophrenic postmortem tissue (Gao et al. 1999).
Moreover, this model might be useful in identifying
those new antipsychotic drugs that might confer spe-
cial, additional, or novel antipsychotic benefits beyond
the action of conventional antipsychotics.

 

A HOMOLOGOUS PCP MODEL IN THE RAT 
WITH ACTIVATIONAL ANALYSIS

 

The ketamine model in healthy humans with behav-
ioral and rCBF analysis has a homologous animal prep-
aration using PCP with behavioral, IEG, or 2-deoxyglu-
cose (2DG) analysis in the laboratory rat. Examination
of the distribution of glucose utilization (Duncan et al.
1998; Tamminga et al. 1987; Weissman et al. 1987) or
IEG (Gao et al. 1998) activation/inhibition produced by
PCP parallels largely the distribution of ketamine-induced
rCBF changes in humans. While not taking the place of
a healthy human model, PCP-induced regional bio-
chemical changes in the rat are both more available for
full experimental examination and a more efficient ini-
tial screen for new antipsychotic candidates. Moreover,
similar to the proposed human model, this animal
model has the advantage of potentially uncovering
novel mechanisms of antipsychotic activity because of
its neurochemical action at the NMDA-sensitive iono-
phore. This homologous animal technique is especially
valuable when used together with the ketamine model
in humans.

Other actions of PCP in laboratory animals are al-
ready used for psychosis modeling [e.g., in PPI studies
(Swerdlow et al. 1998)], in primate social behavior stud-
ies (Corbett et al. 1995), and in histologic studies (Farber
et al. 1998).

We are currently using this PCP preparation to
screen conventional, new, and potential antipsychotics
to characterize their actions on the PCP-induced IEG
changes. Our preliminary data indicate that d-cyclo-
serine fully inhibits the actions of PCP in all brain areas.
Haloperidol inhibits PCP effects on IEGs in some areas,
whereas olanzapine blocks PCP-induced IEG changes
in most brain areas. The primary advantage of this

model in identifying novel nondopaminergic antipsy-
chotics will occur with screens of glutamatergic drugs
in the animal model first and then, if positive, in the hu-
man model. Because the actions of these PCP antago-
nists differ regionally and differ in their human actions,
an obvious link may establish the relationship between
drug action and a region with a PCP-induced action
more closely.

 

CONCLUSIONS

 

The ketamine model in healthy human volunteers and
the PCP model in rats can be used to study the patho-
physiology of psychosis and as a potential screen for
superior antipsychotic drug action. This model can be
extended to the schizophrenic volunteer if a question
arises that can only be addressed in association with the
illness. Ketamine is highly valuable as a human probe
for the glutamate system, perhaps the only one cur-
rently available. Because it produces a mild psychoto-
mimetic response in both healthy and schizophrenic
volunteers, ketamine needs to be applied in the context
of ethical scrutiny: informed consent, family participa-
tion, immediate and extended follow-up, and close in-
stitutional review. In addition, this probe cannot be
used in humans frivolously, in situations where scien-
tific merit is lacking, or when the question could be an-
swered in a simpler way. Attention to risk/benefit as-
pects of a study is more critical here than in benign
human studies. In this context of heightened aware-
ness, ketamine use in the study and treatment of schizo-
phrenia deserves further evaluation.
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