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CSF 5-HIAA and Nighttime Activity in

Free-Ranging Primates
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Men with low CNS serotonin turnover, as measured by
cerebrospinal fluid 5-hydroxyindoleacetic acid (CSF
5-HIAA) concentrations, exhibit aberrant circadian activity
patterns characterized by disrupted sleep rhythms and
daytime hyperactivity. To assess whether similar patterns
are found in nonhuman primates we examined the
relationship between CSF 5-HIAA and nighttime activity
in free-ranging monkeys. CSF samples were obtained from
16 adult male rhesus macaques living on a 475 acre, heavily
forested sea island. Each subject was captured, fitted with a
radio-telemetry motion-detector collar, and then released
back into its group. A receiver placed near the sleeping trees
of the study subjects recorded activity between 2100 hrs and
0600 hrs. Trained observers recorded behavioral data
during the day. The animals followed a typical diurnal
activity pattern, as they were active 74% of the sampled
time during the day and 37% of the sampled time during
the night. CSF 5-HIAA concentrations were inversely

correlated with total duration of nighttime activity as well
as mean duration of all active events. Nighttime activity
was inversely correlated with daytime activity. CSF
3-methoxy-hydroxyphenylglycol (MHPG) concentrations
were positively correlated with total nighttime activity, and
inversely correlated with daytime sleep frequency. We
conclude that male rhesus with low CSF 5-HIAA
concentrations have higher total nighttime activity, longer
mean periods of nighttime activity, and sleep more during
the day than do males with high CSF 5-HIAA
concentrations. This suggests that low serotonergic
neurotransmission is associated with aberrant diurnal
activity, as evidenced by a disruption of nighttime sleep
patterns and a compensatory higher rate of inactivity
during the day. [Neuropsychopharmacology
22:210-218,2000]  Published by
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Psychiatric research suggests that a reduced turnover
rate of serotonin in the central nervous system (CNS),
as measured by cerebrospinal fluid (CSF) 5-hydroxyin-
doleacetic acid (5-HIAA), is a risk factor for impaired
impulse control, violent behavior, and premature mor-
tality from suicide and violence (Faustman et al. 1990;
Kruesi et al. 1990; Lidberg et al. 1985; Linnoila et al.
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1983; Virkkunen et al. 1994). Research using nonhuman
primates has replicated and extended many of these
findings (Higley et al. 1996a; Higley et al. 1992a; Higley
et al. 1996b; Kaplan et al. 1994; Mehlman et al. 1995; Me-
hlman et al. 1994; Mehlman et al. 1997; Raleigh 1987;
Raleigh et al. 1983a; Raleigh et al. 1983b; Raleigh et al.
1980; Raleigh and McGuire 1994). Further, this research
has demonstrated that inter-individual differences in
CSF 5-HIAA concentrations are stable across time and
experimental settings and can be attributed to genetic
and early environmental influences that produce last-
ing modifications in the CNS serotonin response (Hig-
ley et al. 1996b; Higley et al. 1994; Higley et al. 1996a).

Serotonin-mediated behavioral deficits are thought
to result in part from an inability to maintain a homeo-
static response in a number of physiological systems
(Virkkunen et al. 1989a; Virkkunen and Narvanen 1987;
Virkkunen et al. 1994). Various lines of evidence indi-
cate that central serotonin neurotransmission contrib-
utes to regulation of sleep-wake cycles and circadian
activity patterns. For example, several decades of re-
search has shown that the sleep-wake cycle is partially
modulated by serotonin release from projections of the
ralphe nuclei (Jacobs 1991; Jouvet 1974; Jouvet 1967;
Koella 1985; Koella and Czicman 1966; Maeda et al.
1989; Puizillout et al. 1981). Further, administration of
p-chlorophenylalanine (PCPA), which inhibits the syn-
thesis of serotonin, causes a reduction in total sleep in
the cat (Jouvet 1974), rat (Torda 1967), and monkey
(Weitzman et al. 1968). Finally, experimentally induced
lesions of the ralphe system lead to nerve terminal de-
creases in 5-HT and 5-HIAA which are directly propor-
tional to the degree of insomnia produced by the le-
sions (Jouvet 1974). These findings support the view
that increases in CNS serotonin turnover rate promote
sleep, in particular NREM sleep, and that deficits in se-
rotonergic transmission are associated with insomnia,
high levels of nighttime activity and/or other sleep dis-
turbances (Jouvet 1974; Koella 1985).

Recent evidence from studies of rodents also high-
lights the role of serotonin in modulating circadian ac-
tivity patterns through serotonergic projections to the
endogenous circadian pacemaker (Klein et al. 1991;
Miller et al. 1996), the suprachiasmatic nucleus (Meyer-
Bernstein et al. 1997; Meyer-Bernstein and Morin 1996).
For example, 5-HT is believed to regulate the phasic ef-
fects of light on circadian rhythms (Kennaway et al.
1996; Meyer-Bernstein and Morin 1996; Prosser et al.
1993; Selim et al. 1993; Smale et al. 1990). Also, fluoxe-
tine-induced increases in serotonergic transmission de-
crease the duration of circadian periods (Possidente et
al. 1996), and serotonergic afferents to the suprachias-
matic nucleus are necessary to synchronize nonphotic
activity cues into circadian patterns (Edgar et al. 1997).
These findings suggest that a reduced central serotonin
turnover rate may be conducive to disruptions in circa-
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dian patterns of activity, and that these disruptions
may lead to increased rates of nighttime activity and/or
concomitant sleep disturbances.

Few human studies have directly investigated the re-
lationship between impaired CNS serotonin turnover
rate and aberrant diurnal sleep-wake cycles. However,
in a recent study of male alcoholic offenders, Virkkunen
and colleagues (Virkkunen et al. 1994) found that of-
fenders grouped by antisocial personality disorder
(ASP) and intermittent explosive disorder (IED) have
low CSF 5-HIAA concentrations and exhibit higher lev-
els of nighttime activity than do healthy volunteers.
However, ASP offenders exhibit higher levels of day-
time activity than do healthy volunteers, pointing to a
general disruption of diurnal activity patterns. In con-
trast, IED offenders show levels of daytime activity that
cannot be distinguished from those of normal controls.
A recent laboratory study suggested that a similar rela-
tionship between impaired CNS serotonin and aberrant
circadian activity may also exist in nonhuman primates,
as socially housed juvenile and adolescent macaques
with low CSF 5-HIAA concentrations failed to fall
asleep readily and were more likely to exhibit excessive
activity during the daytime hours than were macaques
with high CSF 5-HIAA concentrations (Zajicek et al.
1997). However, in this study 24-hour assessments were
not made and the high number of monkeys that were
confined together in a cage may have confounded the
results.

In the present study we investigated the relationship
between nighttime activity and CSF 5-HIAA concentra-
tions in free ranging rhesus macaques (Macaca mulatta).
Rhesus macaques are well suited for making such as-
sessments because CSF can be removed from the cis-
terna magna, where measurements of 5-HIAA probably
better reflect CNS serotonin activity than do lumbar
punctures. Studies show that while serotonin turnover
is relatively rapid, 5-HIAA concentrations are more
slowly changing, requiring 30 minutes or longer to re-
flect the upstream changes (Bacopoulos et al. 1979;
Brammer et al. 1987; Higley et al. 1991), thus allowing
one to assess naturally occurring serotonin activity of a
subject. As noted, this assessment shows that subjects
exhibit unique and stable interindividual differences
that persist across time and setting (Higley et al. 1996a;
Higley et al. 1994; Higley et al. 1996b). A natural setting
provides a unique opportunity for studying nighttime
activity, which is highly influenced by social and envi-
ronmental factors. For example, monkeys at our study
site find a new sleep area in their home range each
night, and enter sleeping trees up to 15 m in height be-
fore sunset and remain until daybreak. These condi-
tions are quite different than those found in standard
laboratory settings where animals may be singly caged
and subject to unnatural disturbances from laboratory
personnel and colony management practices. Based on
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animal and human studies showing a relationship
among serotonin, total sleep duration, and circadian ac-
tivity patterns, we tested the hypothesis that rhesus
macaques with low CSF 5-HIAA concentrations show
higher levels of nighttime activity than do rhesus
macaques with high CSF 5-HIAA concentrations. Sec-
ond, we evaluated whether subjects with high levels of
nighttime activity and low concentrations of CSF 5-
HIAA have daytime activity patterns that more closely
resemble human offenders diagnosed with antisocial
personality disorder (ASP) or intermitent explosive dis-
order (IED).

METHOD
Subjects

The subjects were 16 adult male rhesus macaques with
a mean age of 86 months at the onset of this study. The
animals are part of a free-ranging colony of approxi-
mately 4500 monkeys that reside on a 475-acre South
Carolina sea island. At the time of sampling the popula-
tion was organized into 35 social groups with an adult
sex ratio of 2.5 females to 1 male. Subjects were selected
when they were juveniles, 18-24 months of age. To as-
sure a normative sample of CSF 5-HIAA and aggressive
subjects, eight of the subjects in the pre-established age
range were selected on a random basis. Four more were
selected on the basis of observations of aggressive be-
havior in the corral and/or by their fight wounds, and
the remaining four were selected on the basis of their
display of submissive and/or fear-related behaviors in
the corral. Preliminary assessments of CSF 5-HIAA con-
centrations showed that these subjects were representa-
tive of the overall population sample. More details on
the study population can be found in previous publica-
tions (Higley et al. 1992a,b; Higley et al. 1996b; Higley
et al. 1996¢; Mehlman et al. 1995; Mehlman et al. 1994;
Mehlman et al. 1997; Taub and Mehlman 1989).

Methods of Capture

We trapped animals by concealing technicians in blinds
near the entrances of ten capture corrals. Corn, fruit,
and commercial monkey chow were placed in the cor-
ral, and as each subject entered the corral to forage a
technician closed the door. The animal was then netted,
anesthetized (ketamine hydrochloride, 10 mg/kg, IM),
and driven to a clinic area where a CSF sample was ob-
tained. After the CSF sample was obtained, the animal
was weighed, given a physical examination, and fitted
with a motion sensing radio telemetry transmitter.
Upon full recovery from anesthesia, the animal was re-
leased near its social group.
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Physiological Data Collection

Physiological samples were obtained between 0900 and
1600 hrs over a four-day period. We used a 22-gauge
needle and a 5cc syringe to obtain 3-ml CSF samples
from the cisterna magna of each male within 35 minutes
of ketamine injection. Previous studies have shown that
there is no significant capture effect on CSF monoamine
concentrations if samples are obtained within 30 to 35
minutes of ketamine injection (Bacopoulos et al. 1979;
Brammer et al. 1987; Higley et al. 1991). As in our ear-
lier study (Higley et al. 1991), preliminary analyses in-
dicated that neither time to capture nor time from ket-
amine injection to the CSF sample was correlated with
monoamine concentrations. The samples were quick
frozen on dry ice, stored at —70° and later assayed for
5-HIAA, homovanillic acid (HVA), and 3-methoxy-
hydroxyphenylglycol (MHPG) using high performance
liquid chromatography with electrochemical detection
(Scheinin et al. 1983). All intra and interassay coeffi-
cients of variation were less than 10% (Higley et al.
1992a,b; Mehlman et al. 1995; Mehlman et al. 1994).

Nighttime Behavioral Data Collection

Each radio telemetry collar contained a motion detector
that altered the rate of signal emission depending on
the orientation and change in orientation of the radio
transmitter. These signals were monitored with a radio
telemetry receiver and fed into an electronic activity re-
corder (MPC-100) that averaged these signals over 10-sec
intervals. The numerical output of the EAR was loaded
into a commercial database program so that each sub-
ject’s nighttime activity output could be graphically
represented as mean milliseconds per 10-sec interval.
Periods of flat output or only very small oscillations
were scored as inactive periods, alternating with active
periods. Spikes of activity within each flat-line output
were counted as activity if they exceeded 20 seconds in
duration. Activity was thus measured as frequency
(number of periods per sample), duration (number of
total minutes spent in activity and inactivity), and a de-
rived variable, the mean length of activity periods, cre-
ated by dividing total duration by the frequency of ac-
tive periods. Before beginning the formal phase of the
study, the collars were tested on single-caged and
group housed males. Behavioral observations showed a
high degree of correspondence between data collected
with using direct observations and data collected using
the motion detectors.

Nighttime data collection occurred over a 45-day pe-
riod that began within 30 days after physiological data
had been collected. A technician located each subject
between 1930 and 2030 hrs and settled in near the sleep-
ing site to allow the group time to habituate to the tech-
nician’s presence. The MPC-100 was used to collect
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nighttime data. Recording sessions began at 2100 hours.
The MPC-100 collected and stored data for two periods
of five and four hours each, representing the time be-
tween 2100 hrs each night and 0600 hrs the next morn-
ing. During the study we discovered that one subject
had received a severe wound as the result of inter-male
aggression. His nighttime and daytime behavior was
biased towards inactivity (presumably because his
wound was healing). As a result we omitted these data
from further consideration.

Accuracy of the Electronic Nighttime Recordings

Laboratory tests taken prior to field use showed the
MPC-100 to be sensitive enough to detect subtle body
movements, but less sensitive to movements that were
limited to head-only or leg-only movements that did
not involve changes in body posture. To verify the rela-
tionship between activity periods measured by the
MPC-100 and real-time patterns of activity, we collected
simultaneous sampling using the MPC-100 and a field
observer for a 16-minute period for each individual.
During this time, the observer recorded all frequencies
and durations of lying and sitting without significant
head movement. The majority of the inactive periods
were spent in trees (85%) and consisted of the animal
sitting or lying quietly. The observations of lying and
quiet sitting were thus pooled together to represent pe-
riods of inactivity, measured by frequency and total du-
ration. Activity periods were derived from these data,
as well as mean duration of active periods, and we then
correlated the MPC-100 output with the simultaneous
field observations. For duration and frequency data
there were significant positive correlations between the
two methods (for duration data, r(13) = .68, p = .004;
for frequency data, (13) = .52, p = .04).

Daytime Behavioral Data Collection

Daytime behavioral data collection occurred over a 45-
day period that began with the onset of nighttime data
collection. We collected daytime data using focal ani-
mal sampling randomized for subject order and repre-
sentational by time of day. A total of 70 hours of obser-
vations were made during ten sessions. All subjects
were followed in the field with radio telemetry. Quanti-
tative behavioral data were collected on frequency and
duration of lying or sleeping, and the behaviors were
combined to represent periods of inactivity. Non-sleep-
ing data were found to be heterogeneous with respect
to the simultaneous occurrence of foraging, grooming,
head movements, etc. Duration and frequency of day-
time activity were then calculated from the frequency
and duration of inactivity data. Observations were also
collected on frequencies of yawning. An event was con-
sidered to have ended if it stopped and did not resume
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within 10 seconds. Both observers were blind to the
physiological data and the hypotheses being tested. To
establish inter-observer reliability, simultaneous obser-
vation sessions were conducted at the beginning, mid-
point, and end of the study. During these sessions, both
observers scored the same subjects for concurrent 15-
minute periods. All inter-observer reliabilities on the
various categories of behavior were determined by Co-
hen’s kappa test values to be greater than 0.85.

Preliminary Data Analyses

All correlation coefficients reported herein are Pearson
product-moment with an alpha level of 0.05. We par-
tialled out subject age and weight by use of standard-
ized residuals for physiological variables affected by
these potential confounding variables. Measures re-
lated to conditions of capture (time of day, elapsed time
between capture and sampling, etc.), as well as age and
weight, were then correlated with physiological mea-
sures to determine whether these factors could be con-
sidered confounds. Time of Day and Time to CSF were
not significantly correlated with CSF metabolite levels.
As expected, weight and age were positively correlated
with each other (#(13) = .53, p < .04), and with CSF
5-HIAA (r(13) = —.58 and —.68, respectively, p < .03)
and HVA (r(13) = —.72 and —.55, respectively, p < .04).

RESULTS
Physiological Measures

The mean CSF 5-HIAA concentration per subject was
152 pmols/ml (range = 98-226 pmols/ml; s.d. = 42
pmols/ml). The mean CSF HVA concentration per sub-
ject was 760 pmols/ml (range = 465-1394 pmols/ml;
s.d. = 223 pmols/ml). The mean CSF MHPH concentra-
tion per subject was 129 pmols/ml (range = 68-159
pmols/ml; s.d. = 27 pmols/ml). We noted significant
positive correlations between CSF 5-HIAA and HVA
concentrations (r(13) = .63, p < .01). We noted a signifi-
cant negative correlation between CSF MHPG and
HVA (r(13) = —.52, p < .05). The correlation between
CSF MHPG and 5-HIA A was not statistically significant
(r(13) = —.07).

Nighttime Activity

The relationships between the three measures of night-
time activity are displayed in Table 1. Total duration of
nighttime activity was positively correlated with mean
duration of nighttime activity (r(13) = .72, p < .002), as
was frequency and total duration of nighttime activity
(r(13) = .53, p < .04). We noted an inverse correlation
between total duration and frequency of nighttime in-
activity periods (r(13) = —.53, p < .04) indicating that as
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Table 1. Descriptive Statistics for Nighttime Activity Measures and Pearson r
Correlations Between the Three Measures. For all Measures n = 15.

Correlations
Descriptive Statistics
Total Mean

EAR measures mean s.d. low high Duration Duration
Frequency Activity 20.0 9.8 4 36 r = .53*
Total Duration

Activity (minutes) 202.0 120.5 7 389 r=.72%
Mean Duration

Activity (minutes) 9.9 55 1.8 18.5

**p < .01

*p <.05.

total time spent in nighttime activity decreased there were
fewer inactive events with increasingly longer duration.

Nighttime Activity and Physiological Measures

CSF 5-HIAA concentrations (with weight and age statisti-
cally partialled out) were inversely correlated with the fre-
quency of active periods (#(14) = —2.65, p < .03) and with
the total duration of nighttime activity (#(14) = —2.21,p <
.05). Further analysis revealed that CSF 5-HIAA concen-
trations were positively correlated with the mean duration
of nighttime periods of inactivity (#(14) = 2.22, p < .05).
CSF HVA concentrations (with weight and age statisti-
cally partialled out) were inversely correlated with mean
duration of nighttime activity periods (#(14) = —4.59, p <

.001). CSF MHPG concentrations (with Time of Day statis-
tically partialled out) were positively correlated with
mean duration of nighttime activity (£(14) = 2.56, p < .03).

Daytime Activity and Physiological Measures

We failed to detect any associations between daytime
measures of activity and CSF 5-HIAA and HVA concen-
trations (age and weight statistically partialled out). In
contrast, CSF MHPG concentrations (with Time of Day
residualized out) were positively correlated with daytime
sleep frequency (#(14) = 2.69, p < .02) and daytime yawn-
ing (t(14) = 2.41, p < .04), and inversely correlated with
mean duration of activity periods (£(14) = —2.68, p <
.02). See Figure 1 and Figure 2.
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Figure 1. Scattergram plot of CSF 5-HIAA z scores (with age and weight statistically partialled out) correlated with total

duration of nighttime activity in minutes.
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Daytime and Nighttime Measures of Activity

There were no significant correlations between mea-
sures of nighttime and daytime activity. However,
when extreme values of nighttime activity were re-
moved from the distribution (< —1.6 or > 1.6 standard
deviations), total nighttime activity was inversely corre-
lated with total daytime activity (r(10) = —.63, p < .03).
We also noted a positive correlation between nighttime
activity and daytime yawning (r(10) = .81, p < .001).

DISCUSSION

We found support for the primary hypothesis that time
spent inactive, presumably asleep, during the nighttime
hours was positively correlated with serotonin turnover
rate. Similarly, subjects with low CSF 5-HIAA concen-
trations had higher frequencies and a higher total dura-
tion of nighttime activity than did subjects with high
CSF 5-HIAA concentrations. Thus, it appears that free-
ranging rhesus males with low serotonergic neu-
rotransmission are more prone to sleep difficulties such
as frequent waking, high levels of nighttime activity,
and possibly more tiredness during the day. These find-
ings are consistent with research in impulsive male al-
coholics with low CSF 5-HIAA concentrations showing
that they exhibit aberrant diurnal activity rhythms with
daytime naps, and frequent nighttime waking, and
higher than normal overall daytime activity (Roy et al.
1986; Virkkunen et al. 1994). They are also consistent
with a recent laboratory study of rhesus macaques

showing that onset of nighttime sleep is inversely corre-
lated with CSF 5-HIAA concentrations (Zajicek et al.
1997).

HVA and MHPG concentrations were not correlated
with time spent inactive, but they were correlated with
time spent active, suggesting that the catecholamines
were not related to sleep, but instead associated with
waking activity during the nighttime hours. This rela-
tionship between HVA and nocturnal activity remained
significant even when 5-HIAA and HVA were simulta-
neously entered in a multiple regression analysis (t(14) =
—4.48, p < .002). Similarly the relationship between
nocturnal activity and MHPG remained significant
even when 5-HIAA and MHPG were simultaneously
entered in a multiple regression analysis (£(14) = 2.67,
p < .03). These findings are intriguing, and suggest the
possibility that the serotonin system is more strongly
involved in sleep regulation, but when the subjects are
awake, the serotonin and catecholamine systems are
both involved in modulating activity.

We did not find an association between measures of
daytime activity/inactivity and CSF 5-HIAA and HVA
concentrations. This finding is of particular interest in
view of research indicating that alcoholics with low CSF
5-HIAA concentrations and antisocial personality dis-
order (ASP) have higher than normal measures of day-
time activity, while alcoholics with low CSF 5-HIAA
concentrations and intermittent explosive disorder
(IED) do not (Virkkunen et al. 1994). Thus, our macaque
subjects appear to be more similar to patients with IED
than to patients with ASP. This is consistent with the
contention that increased daytime activity in ASP of-
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fenders reflects the interaction between ASP and atten-
tion deficit disorder (and its attendant hyperactivity),
rather than simply lowered CSF 5-HIAA concentrations
(Virkkunen et al. 1994). It must be noted that the
present results are independent of previous alcohol
consumption, which is known to affect peptide concen-
trations in the suprachiasmatic nucleus for long periods
of time. To the degree that our findings generalize to
the human condition, they suggest that the aberrant di-
urnal activity pattern seen in alcoholics with low CSF
5-HIAA concentrations is not simply a result of pro-
longed exposure to alcohol, but may instead be a pri-
mary behavior trait characterizing populations with im-
paired CNS serotonin functioning.

CSF MHPG concentrations showed a correlation pat-
tern opposite to those of CSF 5-HIAA and HVA concen-
trations, exhibiting a positive correlation with night-
time activity. This is somewhat consistent with our
previous studies (Higley et al. 1992b; Higley et al.
1996a) and some (Brown et al. 1979), but not with all,
human studies (Virkkunen et al. 1989b) investigating al-
coholism and violent behavior. In these studies, low
CSF 5-HIAA and high CSF norepinephrine or MHPG
concentrations were associated with violent behavior,
wounding, and premature death from violent behavior.
Unlike the other metabolites, MHPG exhibited correla-
tions with daytime sleep and awake activity. Subjects
with low CSF MHPG concentrations yawned and
napped less, and spent more time active than did sub-
jects with high CSF MHPG. Subsequent studies are un-
derway to assess a more complete behavior daytime
profile of subjects with low MHPG.

Jacobs, in a comprehensive reviews of CNS serotonin
and diurnal activity patterns, showed that diurnal
sleep-wake-arousal motor patterns are positively corre-
lated with CNS serotonin firing patterns in many areas
of the brain, including the suprachiasmatic nucleus (Ja-
cobs 1987; Jacobs and Fornal 1998). CNS serotonin fir-
ing patterns are shown to be most active during pat-
terns of locomotion, and least active during sleep,
especially REM sleep (Jacobs 1987; Jacobs and Fornal
1998). While this seems somewhat paradoxical when
considering our results (subjects with low CSF 5-HIAA
concentrations were the most active, and least likely to
sleep), it may be that the two different methods of mea-
surement reflect different variables. Firing patterns of
CNS serotonin neurons are phasic, specific to certain
stimuli, and time-linked to motor activity or sleep pat-
terns. CSF 5-HIAA concentration, on the other hand, is
an integrated measure that has been shown to be trait-
like across stimuli and situations, and while individual
CSF 5-HIAA concentrations are reflective of changing
states and stressors (Higley et al. 1996a; Higley et al.
1991; Higley et al. 1992b), interindividual differences
are enduring. To reconcile this apparent discrepancy
electrophysiological studies would need to be per-
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formed on subjects with high and low CSF 5-HIAA con-
centrations. These studies would be of considerable in-
terest, since subjects with low CSF 5-HIAA
concentrations show numerous impulse control deficits
and it is possible that subjects with low CSF 5-HIAA
concentrations show a less time-linked phasic link be-
tween motor patterns and CNS serotonin activity which
may be related to their characteristic behavioral deficits.

This study contributes to the development of a non-
human primate model that describes the behavioral
correlates of naturally occurring variations in central se-
rotonin turnover. In this long-term study trait-like vari-
ation in CSF 5-HIAA is correlated with an array of dele-
terious behavioral patterns which include severe
aggression and wounding (inverse), risky, impulsive
leaping (inverse), sociality (positive), early death (in-
verse), and sexual interactions with insemination (posi-
tive) (Higley et al. 1996b; Higley et al. 1992a; Higley et
al. 1996a; Higley et al. 1996¢; Joseph and Kennett 1980;
Mehlman et al. 1995; Mehlman et al. 1994; Mehlman et
al. 1997). The present study adds to the growing profile
of behaviors associated with natural variation in CSF 5-
HIAA concentrations by showing an inverse correlation
between central serotonin turnover rate and total night-
time activity. We conclude that male rhesus monkeys
with low CSF 5-HIAA concentrations have disrupted
circadian patterns, are more active at night, and less ac-
tive during the day.
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