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Mood disorders are common, recurrent and disabling 
illnesses which are frequently associated with 
hypothalamic-pituitary-adrenal (HPA) axis dysregulation 
and memory loss. The hippocampus provides negative 
feedback to the HPA axis and has an important role in key 
aspects of spatial and declarative memory. Thus, 
hippocampal dysfunction could account for both the 
memory impairment and neuroendocrine abnormalities 
found in mood disorders. The critical role of the 
hippocampus in declarative memory, emotional processing, 
and vulnerability to stress has been demonstrated in both 
animal and human studies. Cellular processes in the 
hippocampus including long-term potentiation, 

neurogenesis, and dendritic remodeling are currently areas 
of intense study. Human studies report cognitive 
impairment consistent with hippocampal dysfunction in 
depression, bipolar disorder, Cushing’s disease, and in those 
individuals receiving exogenous corticosteroids. This 
review examines data on the role of corticosteroids in 
hippocampal remodeling and atrophy in patients with mood 
disorders. Interventions to prevent or reverse the damaging 
effects of corticosteroids on the hippocampus are discussed. 
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The role of the hippocampus in memory has long been
appreciated. Over forty years ago, severe amnesia in a
patient following removal of this brain region for sei-
zure control was reported (Scoville and Milner 1957).
More recent reports have suggested that a functional
hippocampus is needed for a specific cognition process

termed declarative, explicit, or relational memory which
requires conscious reflection in contrast to reflexive
memory which is not dependent on conscious aware-
ness (Eichenbaum et al. 1992; Squire 1992; Kandel and
Schwartz 1985). Surgical removal of the temporal lobe,
including the hippocampus, is associated with deficits
in declarative memory in humans (Baxendale et al.
1998), and hippocampal volume is correlated with de-
clarative memory performance (Golomb et al. 1994).

Mood disorders are frequently associated with hy-
percortisolemia, and an associated finding is impaired
information processing and memory loss. The hippoc-
ampus provides negative feedback to the hypotha-
lamic-pituitary-adrenal axis (HPA). In a recent review,
the suggestion was made that changes in the hippocam-
pus, secondary to stress, may be central to the develop-
ment of depression in vulnerable individuals (Duman
et al. 1997). One possible mechanism of injury to the
hippocampus is corticosteroid exposure. Animal data
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reveal that an excess of corticosteroids causes both re-
versible and irreversible changes in hippocampal struc-
ture and cognition, a topic which has been previously
reviewed (Lupien and McEwen 1997; McEwen 1997,
1999; Sapolsky 1992). Thus, an excess of corticosteroids
and resulting hippocampal damage could contribute
both to further cortisol elevations through impaired
negative feedback to the HPA axis, and cognitive im-
pairment in depressed persons.

This article reviews the evidence that the cumulative
effects of hippocampal damage by corticosteroids lead
to neuroendocrine abnormalities, cognitive impairment
and increased vulnerability to future episodes of affec-
tive illness. Evidence supporting the hypothesis that
hypercortisolemia leads to hippocampal dysfunction in
humans with mood disorders will be discussed. Specifi-
cally, four predictions arising from this hypothesis are
explored: 1) frequency of dexamethasone suppression
test (DST) non-suppression should greaten with in-
creasing number of affective episodes or more total
time with mood symptoms; 2) cognitive functions me-
diated by the hippocampus should become more im-
paired as number of episodes or length of illness in-
creases; 3) there should be a negative correlation
between episode number or illness length and hippoc-
ampal volume; and 4) hypercortisolemic mood disorder
patients should have more cognitive impairment and

smaller hippocampal volumes than normocortisolemic
patients.

Pertinent findings from patients with Cushing’s dis-
ease and patients receiving exogenous corticosteroids
are also discussed as these populations provide addi-
tional support for memory loss and structural changes
in the hippocampus in humans secondary to corticos-
teroids. Potential interventions to protect the hippoc-
ampus are also examined.

 

HPA AXIS REGULATION BY 
THE HIPPOCAMPUS

 

The hippocampus is a primary CNS target for corticos-
teroids (McEwen et al. 1968, De Kloet et al. 1998). Thus,
injury to the hippocampus by corticosteroids could lead
to elevated levels of corticotropin releasing hormone
(CRH), adrenocorticotropin (ACTH), and cortisol (Fig-
ure 1). However, hippocampal interactions with the
HPA axis are complex and may be mediated, at least in
part, by the paraventricular nucleus (PVN) and the bed
nucleus of the stria terminalis (BNST) (see Herman and
Cullinan 1997 for a review).

Considerable evidence in animals demonstrates the
importance of the hippocampus in HPA axis modula-
tion (Jacobson and Sapolsky 1991). Hippocampal le-

Figure 1. The hippocampus has
complex interactions with the HPA
axis including both positive and
inhibitory effects. These effects
involve polysynaptic pathways in
which the bed nucleus of the stria
terminalis (BNST) is involved and
which converge on the paraventric-
ular nuclei (PVN) along with influ-
ences from other brain regions such
as the amygdala (Herman and Cul-
linan 1997). Elevated levels of corti-
costeroids provide a negative feed-
back to the HPA axis by operating
on a number of different brain struc-
tures as well as the anterior pitu-
itary. Note that glucocorticoids may
have a positive feedback effect on
HPA activation via the amygdala
CRH system (Shulkin et al. 1998).
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sions are associated with hypersecretion of glucocorti-
coids during stress-induced activation of the HPA axis
(Feldman and Weidenfeld 1991; Feldman and Conforti
1976; Slusher 1966; Wilson et al. 1980; Fischette et al.
1980; Kim and Kim 1961; Knigge and Hays 1963;
Moberg et al. 1971; Feldman and Conforti 1980), whereas
stimulation of the hippocampus inhibits the adrenocor-
tical stress response (Bouille and Bayle 1973; Rubin et
al. 1966; Mandell et al. 1962; Slusher and Hyde 1961).
Stimulation of the CA3 region dentate and subiculum
appears to increase corticosteroid levels while CA1 stim-
ulation decreases corticosterone levels in rats (Dunn and
Orr 1984), suggesting both positive and inhibitory ef-
fects of different hippocampal regions on the HPA axis.

HPA axis inhibition by the hippocampus appears to
be mediated by negative feedback from circulating glu-
cocorticoids. Destruction of the dorsal hippocampus at-
tenuates the ability of dexamethasone to suppress the
stress response (Feldman and Conforti 1980). Loss of
the normal glucocorticoid fast feedback, mediated, in
part, by the hippocampus, has been reported in humans
with depression and animals in chronic stress para-
digms (Sapolsky et al. 1986a; Young et al. 1991; Liber-
zon et al. 1997).

Therefore, elevated levels of cortisol secondary to
hippocampal damage could produce further injury to
the hippocampus itself, and consequently, even greater
increases in cortisol levels due to impaired feedback
mechanisms to suppress cortisol release, a concept
termed the “glucocorticoid cascade hypothesis” (Sapol-
sky et al. 1986b).

 

EVIDENCE OF HYPERCORTISOLEMIA IN 
MOOD DISORDERS

 

Both, an excess of cortisol and DST non-suppression,
have been reported for many years in patients with
mood disorders (Sachar 1971; Carroll 1981). An analysis
of over 150 studies reported that 43% of persons with
major depressive disorder (MDD) (

 

n

 

 

 

5

 

 4411), 67% with
psychotic depression (

 

n

 

 

 

5

 

 150), 41% with mania (

 

n

 

 

 

5

 

137), and 78% with mixed mania (

 

n

 

 

 

5

 

 41) have DST
non-suppression (Arana et al. 1985; Arana and Moss-
man 1988). Non-suppression may be age dependent in-
creasing from only 34% in patients under 18 years old
to 64% in patients greater than 60 years old. Other stud-
ies have reported a positive correlation between DST
non-suppression and the number of depressive epi-
sodes (Yerevanian et al. 1984; Lenox et al. 1985). DST
non-suppression often returns to normal as the mood
symptoms resolve. However, persistent DST non-sup-
pression is associated with a higher likelihood of re-
lapse in MDD than if the DST normalizes (Greden et al.
1983; Targum 1984). Similar findings of increased relapse
with persistent HPA axis dysregulation have recently

been reported both in depressed and bipolar patients
using the combined dexamethasone suppression/corti-
cotropin releasing hormone (DEX/CRH) challenge test
(Holsboer et al. 1987; Holsboer-Trachsler 1991; Hols-
boer-Trachsler et al. 1994; Schmider et al. 1995).

 

EVIDENCE OF HIPPOCAMPAL IMPAIRMENT 
SECONDARY TO CORTICOSTEROIDS 

IN HUMANS

 

In animal models, exposure to high levels of corticoster-
oids has detrimental effects on both associative learning
and spatial memory (Bohus 1970; Bohus and Lissak
1968; Greidanus 1970). Administration of corticosteroids
accelerates the extinction of a shock avoidance response,
a measure of associative learning (Bohus 1970; Bohus
and Lissak 1968; Greidanus 1970). Spatial memory, as-
sessed using mazes, is impaired in a dose-dependent
manner with corticosterone administration in rats (Vice-
domini et al. 1986). However, corticosterone administra-
tion also restores defects in spatial memory secondary
to adrenalectomy, suggesting biphasic effects of the hor-
mones in animals (McCormick et al. 1997). As will be
discussed, memory deficits in humans with mood disor-
ders, Cushing’s disease, and patients receiving exogenous
corticosteroids, also suggest hippocampal dysfunction.

 

Cognitive Function in Mood Disorders

 

Significant impairment in declarative memory is re-
ported in depressed in- (Weingartner et al. 1981; Roy-
Byrne et al. 1986) and out-patients (Calev et al. 1986;
Sabe 1995) compared to controls. Cognitive function ap-
pears to improve with resolution of mood symptoms
(Sternberg and Jarvik 1976; Fromm and Schopflocher
1984; Bulbena and Berrios 1993; Henry et al. 1973; Rich-
ardson et al. 1994; Strömgren 1977). However, some de-
gree of cognitive impairment has been reported even af-
ter recovery in some (Paradiso et al. 1997; Coello et al.
1990; Abas et al. 1990; Marcos et al. 1994; Trichard et al.
1995), but not all (Fromm and Schopflocher 1984) stud-
ies. Cognitive function has also been investigated in
several studies of patients with bipolar disorder, again
finding cognitive impairment even in euthymic patients
in most (McKay et al. 1995; Coffman et al. 1990; Sapin et
al. 1987; Morice 1990; Tham et al. 1997) but not all (Ca-
lev et al. 1986) investigations.

Two recent studies have investigated cognitive func-
tion in euthymic patients with multiple affective epi-
sodes. Specific deficits in verbal memory were reported
in 25 euthymic bipolar patients (mean illness duration 

 

5

 

22 years) compared to controls (van Gorp 1998). There
was a significant negative correlation between lifetime
months of affective illness and memory suggesting that
cognitive performance worsens over multiple episodes.
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In another investigation, significant impairment in sev-
eral cognitive tests compared to controls (

 

n

 

 

 

5

 

 58) was re-
ported both in euthymic bipolar (

 

n

 

 

 

5

 

 28) and MDD (

 

n

 

 

 

5

 

118) patients (Kessing 1998). The degree of cognitive im-
pairment was greater in patients with multiple episodes
and correlated with the number of prior episodes.

Data from these two studies must be interpreted
with some caution however, given that many, but not
all, of the subjects were receiving psychiatric medica-
tion at the time of cognitive testing. Lithium therapy
has been associated with cognitive impairment in some
(Lund et al. 1982; Squire et al. 1980; Christodoulou et al.
1981; Reuss et al. 1979; Kocsis et al. 1993) but not other
studies (Friedman et al. 1977; Telford and Worrall 1978;
Marusarez et al. 1981; Anath et al. 1981; Engelsmann et
al. 1992; Joffe et al. 1988). Although lithium and other
medication effects may contribute to the cognitive im-
pairment observed in these studies, only 20% of the
subjects in the Kessing (1998) investigation were taking
lithium at the time of testing. In the van Gorp et al.
(1998) study, all subjects were taking lithium but no
correlation was found between serum lithium levels
and cognitive impairment.

Cognitive function in humans with mood disorders
may be associated with elevated cortisol levels and DST
non-suppression. Cognitive impairment in depressed
patients was significantly related to mean urinary free
cortisol levels in one study (Rubinow et al. 1984). Simi-
larly, most (Winokur et al. 1987; Wolkowitz et al. 1990;
Siegel et al. 1989; Wauthy et al. 1991) but not all (Geor-
gotas et al. 1986; Caine et al. 1984) studies have found
greater cognitive impairment in DST non-suppressors
than suppressors, with the discrepancy possibly due to
differences in DST methodology (Wauthy et al. 1991).
An additional explanation for these differences may be
that the studies have not used the same instruments for
assessing cognitive function. One study, specifically,
examined declarative memory and found significantly
greater errors of commission in verbal learning tasks in
depressed DST non-suppressors than suppressors or
normal controls (Wolkowitz et al. 1990).

Thus, an abundance of data supports cognitive im-
pairment during episodes of major affective illness,
which appears to improve with symptom remission,
though some studies have documented persistent cog-
nitive dysfunction even in euthymic patients with
MDD or bipolar disorder. Furthermore, the majority of
investigations have found greater cognitive impairment
in depressed subjects with HPA axis abnormalities.

 

Cognitive Impairment with Exogenous 
Corticosteroids and Cushing’s Disease

 

Cognitive impairment is found both in Cushing’s dis-
ease and during exogenous corticosteroid exposure

providing additional support for the hypothesis that
these hormones are associated with hippocampal dys-
function. Deficits were reported in several measures of
cognitive performance in 25 patients with Cushing’s
disease, which improved with treatment of the hyper-
cortisolemia (Mauri et al. 1993). In another study, im-
pairment in declarative memory was negatively corre-
lated with mean plasma cortisol levels in 12 patients
with Cushing’s disease (Starkman and Schteingart 1981).

Memory deficits have also been reported in patients
receiving short (Naber et al. 1996; Bender et al. 1988; Ol-
iveri et al. 1998) or long-term (Keenan et al. 1996) corti-
costeroid therapy. Deficits in declarative memory were
observed in subjects receiving even 4–5 days of dexam-
ethasone or prednisone (Wolkowitz et al. 1990; New-
comer et al. 1994). A similar, reversible and, dose-de-
pendent impairment in declarative memory was
reported with high dose (160 mg/day) but not low dose
(40 mg/day) hydrocortisone administration, suggesting
similar memory deficits with both cortisol and synthetic
corticosteroids (Newcomer et al. 1997; personal com-
munication). Thus, data suggest cognitive impairment
including declarative memory in Cushing’s syndrome
and during exogenous administration similar to those
reported in patients with mood disorders.

 

Structural Brain Changes in Mood Disorders

 

Several investigators have examined hippocampal vol-
umes in subjects with mood disorders. No significant
difference in the amygdala-hippocampal volume was
found between depressed patients (

 

n

 

 

 

5

 

 19) and normal
controls (

 

n

 

 

 

5

 

 30) in one investigation (Axelson et al.
1993). However, a significant negative correlation was
found between post-dexamethasone cortisol concentra-
tion and amygdala-hippocampal volume suggesting
that smaller hippocampi are associated with poor sup-
pression of cortisol. In this study, the sensitivity to de-
tect hippocampal atrophy may have been limited by the
use of methods which did not separate amygdala from
hippocampus.

A more recent investigation examined hippocampal
volumes using MRI in 10 asymptomatic and normocor-
tisolemic subjects with a history of recurrent MDD and
10 matched controls (Sheline et al. 1996). The depressed
subjects had 11% (

 

p

 

 

 

5

 

 0.02) and 15% (

 

p

 

 

 

5

 

 .003) smaller
right and left hippocampi, respectively, than controls.
There was a significant correlation between the total
lifetime days depressed (

 

r

 

 

 

5

 

 

 

2

 

0.65, 

 

p

 

 

 

5

 

 .04) and the left
hippocampal volume as well as a trend toward a rela-
tionship on the right (

 

r

 

 

 

5

 

 

 

2

 

0.59, 

 

p

 

 

 

5

 

 .1). Significantly
reduced grey matter density in the left temporal cortex,
including the hippocampus on MRI in middle-aged pa-
tients with chronic treatment refractory MDD com-
pared to normal controls has also been observed (Shah
et al. 1998). A matched group of patients recovered
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from depression did not differ from controls. This find-
ing, in contrast to the investigation by Sheline et al.
(1996), where even asymptomatic patients had signifi-
cant hippocampal atrophy, suggests a potentially re-
versible process. Thus, even hippocampal changes sub-
stantial enough to be detected using MRI may not
imply permanent damage.

The hippocampus has also been explored using MRI
in persons with bipolar disorder. Significantly smaller
temporal lobe volumes (

 

p

 

 

 

5

 

 .0093) in patients with bi-
polar disorder (

 

n

 

 

 

5

 

 10) compared to normal controls (

 

n

 

 

 

5

 

10) were reported (Altshuler et al. 1991). In men, but not
women, a significant negative correlation was observed
between the duration of illness and the right temporal
lobe volume (

 

r

 

 

 

5

 

 0.92, 

 

p

 

 

 

5

 

 .028). However, a more re-
cent investigation found no significant differences in ei-
ther temporal lobe or hippocampal volumes in euthy-
mic male bipolar subjects (

 

n

 

 

 

5

 

 12) compared to normal
controls (

 

n

 

 

 

5

 

 18) (Altshuler et al. 1998). The earlier in-
vestigation used a scanner with lower resolution (0.5 vs.
1.5 tesla) and included younger subjects (40 vs. 52 years),
as well as inpatients and symptomatic subjects, whereas
the more recent study used subjects asymptomatic for
at least three months. Therefore, as smaller volumes
were only observed in the sample containing symptom-
atic patients, the atrophy in this population could be
due to a state dependent process. In addition, by ex-
cluding subjects without full interepisode recovery, the
more recent study may have excluded patients with
chronic mood symptoms, perhaps the group most likely
to have hippocampal atrophy.

However, it is important to note hippocampal atro-
phy may be only one example of structural changes in
the forebrain related to mood disorders. Atrophy of the
amygdala in MDD (Sheline et al. 1998), and enlarge-
ment in bipolar disorder (Altshuler et al. 1998) have re-
cently been reported. Decreased grey matter volume in
the prefrontal cortex, reportedly secondary to glial re-
duction, have also been observed in patients with mood
disorders (Drevets et al. 1997; Ongür et al. 1998). Thus,
structural changes in brain regions other than the hip-
pocampus may also be common in patients with mood
disorders.

 

Structural Brain Changes in Cushing’s Disease or 
Exogenous Corticosteroid Exposure

 

Several investigations have revealed structural brain
changes in patients with Cushing’s disease. An early in-
vestigation using pneumoencephalography, found cor-
tical atrophy in 90% and cerebellar atrophy in 74% of
subjects with Cushing’s syndrome (Okuno et al. 1980).
The degree of atrophy correlated with the severity of
the illness and was present in all subjects who had
mood symptoms. More recently, hippocampal volumes
were determined with MRI in a group of 12 patients

 

with Cushing’s disease of 1–4 years duration (Starkman
et al. 1992). In three patients, hippocampal volumes fell
below the normal range (95% confidence interval) re-
ported in the literature. The degree of atrophy corre-
lated with both the mean cortisol levels and the degree
of declarative memory impairment. However, this
study is weakened by the lack of a control group and its
reliance on hippocampal volumes reported in the litera-
ture. Measurement of N-acetyl aspartate (NAA), a puta-
tive measure of neuronal integrity (Tsai and Coyle
1995), with 

 

1

 

H magnetic resonance spectroscopy
(

 

1

 

HMRS) has also been used to examine CNS changes in
Cushing’s disease. Significant and widespread reduc-
tions in the NAA/creatine (CRE) ratio, which corre-
lated with deficits in working memory, were observed
in 22 patients with Cushing’s syndrome secondary to
pituitary or ectopic tumors compared to matched con-
trols (D.L. Rosenstein, personal communication). Surgi-
cal excision of the tumors normalized cortisol levels,
and was associated with improvement in NAA/CRE
(6/7 patients) suggesting reversible volume reduction
in this population.

Computed tomography (CT) studies in patients re-
ceiving prescription corticosteroids have also reported
dose-dependent cerebral atrophy. After four weeks of
adrenocorticotropin (ACTH) therapy, 11 of 15 (73%)
children with infantile spasms or Lennox syndrome
had cerebral atrophy which reversed within four weeks
of ending ACTH therapy (Okuno et al. 1980). Similarly,
cerebral atrophy was reported on CT scans in 15 pa-
tients with autoimmune diseases receiving systemic
corticosteroids for six months to five years (Bentson et
al. 1978). The degree of atrophy correlated with the
dose of corticosteroids and was reversed in two pa-
tients after dose reduction or discontinuation. No stud-
ies to date have used neuroimaging to specifically ex-
amine the hippocampus in patients receiving
prescription corticosteroids.

 

DISCUSSION

 

This article has reviewed evidence that cumulative hip-
pocampal changes by corticosteroids lead to abnormal
neuroendocrine findings, cognitive impairment, and in-
creased vulnerability to future episodes in people with
mood disorders. Specifically, evidence in support of
four predictions was examined.

First, frequency of DST non-suppression should in-
crease with increasing number of affective episodes or
more total time with mood symptoms. Two reports
document such an increase (Yerevanian et al. 1984; Le-
nox et al. 1985). However, studies are needed to deter-
mine if persons with recurrent illness are more likely to
have DST non-suppression even between episodes. If
this is observed, then partially or completely irrevers-
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ible loss of normal feedback inhibition to the HPA axis,
possible secondary hippocampal dysfunction, may
have occurred.

Second, cognitive functions mediated by the hippoc-
ampus should worsen as the number of episodes or
length of illness increases. This finding has been re-
ported both in MDD and bipolar disorder (van Gorp
1998; Kessing 1998). One of these investigations found
specific deficits in declarative memory consistent with
hippocampal dysfunction in euthymic patients, sug-
gesting that some degree of irreversible cognitive im-
pairment may have occurred over time (van Gorp
1998).

Third, there should be a negative correlation be-
tween episode number or illness length and hippocam-
pal volume. Two studies have reported such a correla-
tion (Altshuler et al. 1991; Sheline et al. 1996). As with
the worsening of cognition over time in people with
mood disorders discussed above, decreased hippocam-
pal volumes suggest cumulative and at least partially
irreversible changes over multiple episodes. However,
these data are from studies with small patient samples.
In addition, these studies do not rule out the possibility
that a preexisting small or dysfunctional hippocampus
predisposes to DST non-suppression or greater number
of affective episodes, and do not clearly link corticoster-
oids to hippocampal dysfunction. Reports of deficits in
declarative memory and hippocampal atrophy in pa-
tients with Cushing’s disease provide more direct evi-
dence that these hormones lead to hippocampal
changes in humans. Investigations of hippocampal vol-
umes in patients receiving prescription corticosteroids
might provide further support of this hypothesis.

Fourth, hypercortisolemic patients with mood disor-
ders should have greater cognitive impairment and
smaller hippocampal volumes than normocortisolemic
patients. Several investigations support greater cogni-
tive deficits in DST non-suppressors (Winokur et al.
1987; Wolkowitz et al. 1990; Siegel et al. 1989; Wauthy et
al. 1991). Only depressed patients with normal cortisol
levels have been examined with MRI of the hippocam-
pus. Studies examining hippocampal size in depressed
subjects with DST suppression versus non-suppression
would be informative, as would studies in groups with
high rates of non-suppression, such as psychotic de-
pression and mixed mania. Controlled studies using
neuroimaging and neurocognitive testing in these pop-
ulations would help determine if corticosteroids are at
least, in part, responsible for the hippocampal changes
reported in MDD and bipolar disorder.

The nature of the hippocampal changes in humans is
also important. Clearly, the rapid and reversible decline
in declarative memory observed within a few days, or
even hours, of corticosteroid exposure is not due to cell
death. However, this may reflect changes in long term
potentiation and neuronal excitability as has been sug-

gested in animal models (Lupien and McEwen 1997). In
addition, atrophy, when present, does not necessarily
suggest neuronal death but could be secondary to re-
versible changes including the suppression of neuro-
genesis (Gould et al. 1998) or dendritic atrophy (Magar-
iños et al. 1996; Popov and Bocharova 1992; Popov et al.
1992) reported in animals. Post mortem studies of hip-
pocampal neuron number and morphology in persons
with recurrent affective illness, Cushing’s disease, and
individuals who received chronic corticosteroid ther-
apy are needed to better understand the nature of cellu-
lar changes in the human brain following chronic corti-
costeroid exposure. Newly emerging techniques, such
as 

 

1

 

HMRS, may also permit a better understanding of
cellular processes in the hippocampus in living humans
by measuring relative concentrations of possible mark-
ers of neuronal viability such as NAA. Functional mag-
netic resonance imaging (fMRI) might allow examina-
tion of hippocampal function during memory testing in
persons exposed to high levels of corticosteroids and
normal controls.

The process of reversibility in humans is of much im-
portance. Cognitive function appears to improve when
mood improves (Sternberg and Jarvik 1976; Fromm and
Schopflocher 1984; Bulbena and Berrios 1993; Henry et
al. 1973; Richardson et al. 1994; Strömgren 1977), consis-
tent with, at least, partially reversible changes in the
hippocampus. However, the significant impairment in
euthymic patients reported in some studies (van Gorp
et al. 1998; Paradiso et al. 1997; Kessing 1998) is consis-
tent with some degree of either irreversible or slow to
resolve hippocampal changes. Perhaps, during a single
or several mood episodes, a reversible insult to the hip-
pocampus results in cognitive impairment as has been
reported in animals with brief exposure to corticoster-
oids. Over time, with recurrent or chronic mood symp-
toms, permanent changes in the hippocampus may oc-
cur which could explain the cognitive changes observed
even with euthymic mood. Thus, reversible hippocam-
pal insults may eventually, with chronic or multiple ep-
isodes of affective illness, lead to permanent hippocam-
pal dysfunction.

During stress paradigms in animals, levels of
glutamate (Lowy et al. 1993) and serotonin (McKittrick
and McEwen 1996) are increased in the hippocampus.
Therefore, interventions designed to block or reverse
the damaging effects of corticosteroids in the hippoc-
ampus in animal models have focused on: 1) reducing
dose or corticosteroids; 2) use of serotonin reuptake en-
hancing agents; and 3) inhibition of excitatory amino
acid release (McEwen 1997). Structural changes in the
hippocampus associated with chronic stress in animals
can be prevented by reducing corticosteroids levels
through adrenalectomy. Similarly, reduction of corti-
costeroid levels with cyanoketone, a glucocorticoid syn-
thesis inhibitor, prevented the dendritic atrophy associ-
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ated with 21 days of restraint in rats (Magariños et al.
1996). In humans, clinical trials of agents which inhibit
cortisol synthesis (e.g., ketoconazole, metyrapone) and
CRH or glucocorticoid receptor antagonists, could de-
termine if lowering cortisol levels improves cognitive
function on hippocampal atrophy.

Several reports in animals suggest that, tianeptine,
which acts specifically to enhance serotonin reuptake,
blocks and reverses the atrophy-inducing effects of cor-
ticosteroids. Tianeptine pretreatment prevents the im-
pairment in spatial memory in rats observed during a
chronic (21 day) stress model (Conrad et al. 1996).
Tianeptine pretreatment also prevents reduction in
branch points of CA3c pyramidal dendrites in the rat
hippocampus following 21 day restraint stress or corti-
costerone therapy (Watanabe et al. 1992a). Daily tianep-
tine (10 mg/kg) in weeks 4 and 5 reverses 21-day corti-
costerone on restraint stress induced atrophy of apical
dendritics of CA3 pyramidal neurons in rats (Magar-
iños et al. 1999).

Tianeptine also reduces stress-related stimulation of
the hypothalamic-pituitary-adrenal (HPA) axis in rats,
thus reducing plasma ACTH and corticosterone (Del-
bende et al. 1991). However, reduction in HPA activity
by tianeptine is not the primary reason for its blockade
of hippocampal atrophy, because tianeptine both blocks
(Watanabe et al.,1992a) and reverses (Magariños et al.
1999) the atrophy produced by exogenous glucocorti-
coid administration.

Hippocampal damage from corticosteroids can also
be prevented in animals by pretreatment with pheny-
toin, which inhibits glutamate release and blocks
glutamate actions by blocking sodium channels. Pheny-
toin (40 mg/kg) pretreatment prevents decreases in
length and branch points in hippocampal dendrites as-
sociated with chronic restraint stress and daily corticos-
terone injections (10 mg) in rats (Watanabe et al. 1992b).
Stress-induced dentritic atrophy of CA3 pyramidal cells
caused by chronic psychosocial stress in subordinate
tree shrews is blocked by daily phenytoin administra-
tion (Magariños et al. 1996). Plasma levels of phenytoin
achieved in the tree shrew (20 

 

m

 

g/ml) were similar to
levels reported to be neuroprotective in other animal
models and to those used in humans for seizure control.
This finding suggests that currently available pharma-
cological interventions could be employed to prevent or
reverse corticosteroid-induced hippocampal damage in
humans.

 

CONCLUSIONS

 

Animal data indicate that corticosteroids are associated
with cognitive impairment, cellular changes, and even
neuronal death in the hippocampus. Cognitive deficits
and reduced hippocampal volumes have been reported

 

in patients with mood disorders. However, conclusive
evidence linking these signs of hippocampal dysfunc-
tion with elevated corticosteroid levels are not yet avail-
able. If hippocampal changes in humans are secondary
to corticosteroids, then research should focus on deter-
mining if this is due to reversible or irreversible pro-
cesses. If irreversible, then the efficacy of early recogni-
tion and aggressive therapy of mood disorders with
conventional therapies and potential prophylactic phar-
macotherapeutic approaches including such agents as
tianeptine, phenytoin and CRH antagonists must be ex-
amined. If the process is reversible even after recurrent
affective episodes, then these same approaches should
also be employed in people currently affected by
chronic or recurrent mood symptoms.
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