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The dentate gyrus continues to produce new granule 
neurons well into adulthood. This has been demonstrated 
for many mammalian species, from rodents to primates. The 
proliferation of granule cell precursors can be suppressed by 
stressful experiences, presumably via adrenal steroids. 
Recent evidence suggests that serotonin can enhance the 
production of new neurons via activation of the 5HT1A 

receptor. These results present the possibility that the 
inhibitory effects of stress on granule cell production may be 
prevented by 5HT1A receptor agonists. 
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The role of the molecule serotonin, or 5-hydroxy-
tryptamine, in neurotransmission has been recognized
for decades. More recent studies have explored the pos-
sibility that serotonin may have structural effects on the
brain both during development and in adulthood (Ma-
zer et al. 1997; Yan et al. 1997; Watanabe et al. 1992).
These studies have predominantly focused on the role
of serotonin in mediating the structure of the adult
brain. Our recent studies have identified a new role for
serotonin in mediating the structure of the adult brain.
We have found that neurogenesis in the adult mamma-
lian dentate gyrus is enhanced by activation of seroton-
ergic receptors (Jacobs et al. 1998).

 

THE PRODUCTION OF HIPPOCAMPAL
GRANULE NEURONS CONTINUES

INTO ADULTHOOD

 

In the majority of mammalian brain regions, the pro-
duction, migration and death of neurons are restricted

to gestation and are complete within several days. Once
this developmental phase ends, neurons differentiate
and these processes do not continue. In contrast, the
granule cell layer (gcl) of the dentate gyrus is formed
during an extended period that begins during gestation
and continues into adulthood. During the embryonic
period, granule cell precursors originate from the wall
of the lateral ventricles and migrate along radial glial fi-
bers to the developing hippocampus (Rickmann et al.
1987; Schlessinger et al. 1975; Altman and Bayer 1990a,
b). Many of these cells die while migrating toward the
forming dentate gyrus (Gould 1994). From the late em-
bryonic period through the first postnatal week in the
rat, granule neurons are produced from a pool of pre-
cursor cells in the hilus which divide and migrate along
radial glia that extend from the hilus to the developing
gcl (Schlessinger et al. 1975; Altman and Bayer 1990a,
1990b; Rickmann et al. 1987). This period of time is
marked by production of the majority of granule cells
as well as by massive cell death (Schlessinger et al. 1975;
Gould et al. 1991).

In adulthood, granule cells originate from precursor
cells that reside primarily in the subgranular zone (sgz),
the region between the gcl and hilus (Cameron et al.
1993a). We and others have demonstrated that these
precursor cells divide and produce daughter cells that
differentiate into granule neurons. These cells become
incorporated into the gcl and express markers of ma-
ture granule neurons, including neuron specific enolase
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(NSE), the calcium binding protein calbindin, the
NMDA receptor subunit NR1, and Neuronal Nuclei
(NeuN): within 3 weeks of DNA synthesis (Cameron et
al. 1993a, 1993b; Okano et al. 1993; Kuhn et al. 1996).
Cells produced in adulthood receive synaptic input and
extend axons into the mossy fiber pathway (Kaplan and
Hinds 1977; Kaplan and Bell 1984; Stanfield and Trice
1988). Recent studies have shown that this phenome-
non is common to many species of mammals. Three
shrews, marmosets, macaques, and humans have been
shown to produce a substantial number of new hippoc-
ampal neurons in adulthood (Gould et al. 1997, 1998,
1999b).

Recent studies performed using the thymidine ana-
log bromodeoxyuridine to label proliferating cells, and
stereological methods of data analysis have shown that
thousands of new cells are produced each day in the
dentate gyrus of young and middle-aged adults (Gould
et al. 1997, 1998, 1999b). The majority of these cells
differentiate into mature neurons (Gould et al. 1997,
1998). In the aged animal, however, the production of
new granule neurons diminishes significantly in both
the rodent and primate (Kuhn et al. 1996; Gould et al.
1999a).

The substantial number of new granule neurons pro-
duced in the adult hippocampal formation and the con-
servation of this process across mammalian evolution
strongly suggests a function for adult-generated neu-
rons. One approach to determining the function of
these new neurons is to identify the factors and condi-
tions that regulate their occurrence.

 

STRESS SUPPRESSES THE PRODUCTION OF 
HIPPOCAMPAL GRANULE NEURONS:

POSSIBLE ROLE OF ADRENAL STEROIDS
AND NMDA RECEPTOR-MEDIATED

EXCITATORY INPUT

 

We have shown that stressful experiences suppress the
production of new hippocampal granule neurons in
three mammalian species. First, exposure of developing
and adult rats to the odors of natural predators, re-
sulted in a significant decrease in the number of hippo-
campal cells incorporating 3H-thymidine or bromode-
oxyuridine in the dentate gyrus (Gould and Cameron
1996; Tanapat et al. 1998). Second, exposure of adult
marmosets to resident-intruder stress resulted in a sim-
ilar effect, diminished production of new hippocampal
neurons (Gould et al. 1998). Third, the experience of
subordination stress suppresses the formation of new
cells in the dentate gyrus of adult tree shrews (Gould et
al. 1997). This effect is not transient but rather persists
throughout a period of chronic stress as well. Twenty-
eight days of daily exposure (1 hr) to a dominant tree

shrew resulted in a persistent reduction in the number
of new granule cells produced (Fuchs et al. 1997). This
chronic stress paradigm was associated with a decrease
in the volume of the gcl (Fuchs et al. 1997) indicating
that a lasting suppression in the addition of new neu-
rons may alter the structure of the dentate gyrus. Be-
cause all of these paradigms elevate levels of circulating
adrenal steroids, it is possible that the suppressive ef-
fects on granule cell production were mediated through
activation of the hypothalamic-pituitary-adrenal axis.

Indeed, several lines of evidence indicate that circu-
lating levels of adrenal steroids modulate the produc-
tion of granule neurons. First, levels of adrenal steroids
correlate negatively with the rate of granule cell pro-
duction. During the first two postnatal weeks in the rat,
termed the stress hyporesponsive period, the levels of
adrenal steroids are low and the rate of granule cell pro-
duction is high (Sapolsky and Meaney 1986; Schlessinger
et al. 1975). In adulthood, the basal levels of adrenal ste-
roids are relatively high and the rate of granule cell pro-
duction is relatively low (Gould 1994). Second, we have
found that experimental increases in the levels of adre-
nal steroids result in significant decreases in the rate of
granule cell production during development (Gould et
al. 1991) and in adulthood (Cameron and Gould 1994).
Third, we have found that removal of adrenal steroids
stimulates the proliferation of granule cell precursors
(Gould et al. 1992), the vast majority of which differenti-
ate into neurons (Cameron and Gould 1994). Collec-
tively, these findings indicate that adrenal steroids nat-
urally suppress the production of granule neurons.
However, very few precursor cells in the developing or
adult dentate gyrus express either the Type 1 (mineral-
ocorticoid) or Type 2 (glucocorticoid) receptor (Cam-
eron et al. 1993) suggesting that adrenal steroids influ-
ence granule cell production indirectly through another
factor.

Considerable evidence indicates that adrenal ste-
roids suppress granule cell production by acting
through an NMDA receptor-mediated pathway (Cam-
eron et al. 1998). It is likely that these changes in gran-
ule cell genesis as a result of pharmacological manipu-
lations of NMDA receptors reflect a natural inhibition
of this process by perforant path input because lesion of
the entorhinal cortex results in a significant increase in
the number of proliferating cells in the dentate gyrus
(Cameron et al. 1995). However, our preliminary results
indicate that precursor cells do not express the NMDA
receptor subunit NR1 (Cameron and Gould 1996), an
essential subunit of functional NMDA receptors (Luo et
al. 1997), suggesting that NMDA receptor-mediated ex-
citatory input influences granule cell genesis indirectly
through an as yet undetermined factor. To date, the fac-
tors that directly mediate granule cell production re-
main undetermined.
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POTENTIAL CANDIDATES FOR FACTORS THAT 
DIRECTLY REGULATE GRANULE CELL

GENESIS: GROWTH FACTORS
AND SEROTONIN

 

Peptide growth factors have been shown to stimulate
mitosis in a variety of different systems. In particular,
epidermal growth factor (EGF) and transforming
growth factor (TGF

 

a

 

), the endogenous ligand for the
EGF receptor in brain, have been shown to act as potent
mitogens in a variety of systems (Anchan et al. 1991;
Farbman and Bucholz 1996; Yamashita and Oesterle
1995; Zheng et al. 1997). Recent evidence indicates that
a significant percentage of the precursor population in
the adult dentate gyrus expresses EGF receptors (EGFr)
(Okano et al. 1996). Moreover, TFG

 

a

 

 is produced at rel-
atively high levels in the adult dentate gyrus and ap-
pears to be synthesized by neurons (Wilcox and
Derynck 1988; Seroogy et al. 1991). These findings
present the possibility that EGF or TGF

 

a

 

 is the endoge-
nous factor that directly stimulates the proliferation of
granule cell precursors. Recently, we have found that
activation of EGFr, by infusion of EGF or TGF

 

a

 

 directly
into the dentate gyrus, stimulates the proliferation of
granule cell precursors (Tanapat and Gould 1997).

 

SEROTONIN

 

Another potential candidate for the direct mediator of
granule cell genesis is the neurotransmitter serotonin or
5-hydroxytryptamine (5-HT). Serotonin has been shown
to stimulate cell proliferation in nonneuronal systems
(Fanburg and Lee 1997; Takuwa et al. 1989). The den-
tate gyrus is enriched with 5HT1A receptors (Azmitia et
al. 1996): and receives serotonergic innervation from the
median raphe nucleus of the brainstem (Patel et al.
1996).

A considerable body of evidence suggests that 5HT
may stimulate the production of neurons in the dentate
gyrus. First, conditions that are associated with dimin-
ished granule cell genesis, such as malnutrition (De-
bassio et al. 1996), aging (Kuhn et al. 1996; Gould et al.
1999), high corticosterone (Cameron and Gould 1994),
stress (Gould et al. 1997, 1998), and NMDA receptor ac-
tivation (Cameron et al. 1995), also decrease the density
of 5HT fibers or 5HT1A receptors, or inhibit the release
of 5HT in the dentate gyrus (Blatt et al. 1994; Chalmers
et al. 1993; McKittrick et al. 1995; Nishimura et al. 1995;
Meijer and deKloet 1994; Watanabe et al. 1993; Tao and
Auerbach 1996; Whitton et al. 1994; Nyakas et al. 1997).
Second, experimental manipulations that stimulate
granule cell genesis, such as seizures (Parent et al.
1997), adrenalectomy (Cameron and Gould 1994), and
NMDA receptor antagonist treatment (Cameron et al.

1995), also increase the density of 5HT1A receptors or
the release of 5HT in the dentate gyrus (Hayakawa et al.
1994; Burnet et al. 1995; Whitton et al. 1994; Kuroda et
al. 1994). Third, our preliminary evidence indicates that
pharmacological manipulations that elevate 5HT levels
in the hippocampus (fenfluramine) or stimulate 5TH1A
receptors (8-OH-DPAT) increase the rate of prolifera-
tion of granule cell precursors (Jacobs et al. 1998). The
majority of these cells differentiate into granule neurons
(unpublished observations). It is likely that the stimula-
tory effect of 5HT on proliferating cells in the dentate
gyrus is not due to an effect of these drugs on adrenal
steroids, as drugs which elevate 5HT levels typically in-
crease the levels of circulating corticosterone (Serri and
Rasio 1987; Baudrie et al. 1993), a condition that sup-
presses granule cell genesis (Cameron and Gould 1994).
However, it is possible that 5HT acts downstream of
adrenal steroids and NMDA receptors, as NMDA re-
ceptor antagonist treatment stimulates the release of
5HT in the brain (Kondoh et al. 1994; Whitton et al.
1994).

Evidence from nonneural systems indicates that EGF
and 5HT can exert additive or synergistic actions on cell
proliferation (Varrault et al. 1992; Takuwa et al. 1989).
Collectively, these data present the possibility that the
production of new granule neurons is directly stimu-
lated by activation of EGF or 5HT1A receptors located
on granule cell precursors and may be a critical step in
the final common pathway in the regulation of this pro-
cess. Conversely, stress may inhibit granule cell pro-
duction by activating a pathway that involves glucorti-
coids, NMDA receptor-mediated excitatory input and
ultimately decreases the availability of serotonin or its
receptors (Figure 1). Although rapid decreases in the
density of hippocampal 5HT1A receptors have been ob-
served following stress, it is interesting to note that dif-
ferent types of stressors have varying effects on 5HT re-
lease in the hippocampus (Kirby et al. 1997). Our
studies have focused on a small number of species-rele-
vant stressors, all of which inhibit cell proliferation in
an acute manner (Gould et al. 1997, 1998; Tanapat et al.
1998). It is possible that other stressors would have
different, or no, effects on granule cell production de-
pending on their influence on serotonergic systems. For
example, comparison of stressors that stimulate hippoc-
ampal serotonin release with those that do not but that
downregulate 5HT1A receptors would be particularly
instructive.

 

FUNCTIONAL SIGNIFICANCE OF ADULT-
GENERATED HIPPOCAMPAL NEURONS

 

The persistence of hippocampal neurogenesis in adult-
hood raises the important question of what the func-
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tional significance of adult-generated cells might be. The
role of the hippocampal formation in learning and mem-
ory has been recognized for decades (Squire and Zola
1996) but the cellular mechanisms that underlie this as-
sociation remain elusive. Our findings suggest that adult-
generated cells are specifically affected by, and possibly
involved in, learning and memory (Gould et al. 1999).
Stress-induced suppression of neurogenesis may un-
derlie deficits in learning and memory reported follow-
ing chronic corticosterone treatment or stress (Bodnoff
et al. 1995; Krugers et al. 1997). The extent to which
such functional deficits can be prevented by drugs that
stimulate granule cell production, e.g., serotonergic ag-
onists, remains undetermined.
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