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Electrophysiological Actions of Neuropeptide 
Y and Its Analogs: New Measures for 
Anxiolytic Therapy?

 

C. L. Ehlers, Ph.D., C. Somes, B.A., A. Lopez, B.A., D. Kirby, Ph.D., and J. E. Rivier, Ph.D.

 

Neuropeptide Y (NPY) has neuromodulatory actions on 
multiple brain functions including endocrine, behavioral, 
and circadian processes. Behavioral studies suggest that 
NPY is a potent anxiolytic; however, little is known about 
how NPY affects general arousal and/or attention states. 
The present study evaluated the effects of NPY on 
spontaneous brain activity as well as auditory processing by 
using electrophysiological measures. 
Electroencephalographic (EEG) and event-related potentials 
(ERPs) were obtained in awake animals after 
intracerebroventricular administration of NPY (1.0, 3.0 
nmol) and two of its analogs, active at Y1 (1.0, 3.0 nmol) 
and Y2 (1.0, 3.0 nmol) receptor sites. NPY was found to 
produce dose-related effects on electrophysiological 
measures. Spectral analyses of the EEG revealed that NPY 
produced slowing of delta activity (1–2 Hz) in the frontal 
cortex and high frequency theta activities (6–8 Hz) 
concomitant with a speeding up of low frequency theta (4–6 
Hz) in cortex, hippocampus, and amygdala. At higher doses 
(3.0 nmols) in addition to shifts in frequency, EEG power 
was also significantly reduced in all frequencies (0.5–50 
Hz) in cortex, and in the higher frequencies (8–32 Hz) in 

the amygdala. The Y1 and Y2 agonists had a somewhat 
different profile of EEG effects than the parent compound. 
At the 1 nmol dose both agonists were found to produce 
selective depressions in power in the hippocampus. The 3.0 
nmols dose of the Y1 agonist produced decreases in EEG 
stability, an effect commonly produced by anxiolytic drugs, 
whereas the Y2 agonist produced increases in EEG stability 
in cortex and amygdala. Auditory processing, as assessed 
by ERPs, was affected most significantly in the frontal 
cortex where dose-dependent decreases in the N1 component of 
the ERP, a finding also commonly seen after anxiolytics, was 
found. Y1 and Y2 agonists were also found to significantly 
reduce the amplitude of the N1 component of the ERP but 
less so than the parent compound. The electrophysiological 
and behavioral profiles of NPY and the Y1 agonist resembles 
those of anxiolytics such as ethanol and benzodiazepines. 
Taken together these data suggest that electrophysiological 
measures of the actions of this peptide system may represent a 
new potentially useful assay for the development of anxiolytic 
drugs. 

 

[Neuropsychopharmacology 17:34–43, 1997]
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Neuropeptide Y (NPY) is a hexatriacontapeptide amide,
structurally related to pancreatic polypeptide (Tate-
moto et al. 1982). It is now well characterized as a neu-
romodulator in the central nervous system (see Gray
and Morley 1986; Mutt et al. 1989; Wahlestedt et al.
1989; Leibowitz 1991; Heilig et al. 1994; Heilig and
Widerlöv 1995). The localization of NPY in numerous
brain areas supports its role in the regulation of circa-
dian rhythms (Moore and Card 1985; Albers and Ferris
1984), the coordination of endocrine function (Wahles-
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tedt et al. 1987; Leibowitz 1988; Abe et al. 1989; Fuxe et
al. 1989; Danger et al. 1990; Kalra and Crowley 1992;
Catzeflis et al. 1993), modulation of stress and anxiety
(Heilig et al. 1989, 1992), and appetitive responses
(Clark et al. 1984; Levine and Morley 1984; Stanley and
Leibowitz 1984; Stanley et al. 1985; Parrott et al. 1986;
Morley et al. 1987). These data support a neuromodula-
tory role for this neuropeptide in multiple brain functions
(Heilig and Widerlöv 1990,1995; Wettstein et al. 1995).

NPY is extensively distributed in brain with particu-
larly dense networks in limbic structures (see de Quidt
and Emson 1986a,b; Gusstafson et al. 1986; Hendry 1993).
In the rat the highest levels of NPY are found in the nu-
cleus accumbens, septum, periaqueductal gray, hypo-
thalamus, whereas moderate amounts are found in the
cerebral cortex, hippocampus, amygdala, and caudate-
putamen (see Allen et al. 1983; Adrian et al. 1983; Chron-
wall et al. 1985; de Quidt and Emson 1986 a,b; Shen 1987;
Nakagawa et al. 1985). Most NPY neurons in cortex are
non-spiny, small interneurons, and in cortical areas NPY
has been found to coexist with both somatostatin and
GABA (Aoki and Pickel 1989, 1990; Sawchenko et al.
1985; Kowall et al. 1987). In the brainstem, co-localization
of NPY with different groups of monoaminergic neurons
has been observed (Hendry 1993). There is heterogeneity
among NPY receptor subclasses, and in this fast mov-
ing field, at least 5 (Y1–Y5) receptors and receptor sub-
types have either been suggested or characterized (see
Wahlestedt et al. 1986, 1990; Michel 1991; Dumont et al.
1990; Grundemar et al. 1993; Gehlert 1994; Bard et al.
1995; Gerald et al. 1995, 1996; Weinberg et al. 1996).

The behavioral actions of NPY, particularly in rodents,
have been extensively described (see Heilig and Widerlöv
1995). In addition to producing increases in feeding be-
havior, NPY has a marked anxiolytic profile in that when
injected into the brain it produces a reduction in “anxi-
ety” in several different animal models (see Heilig et al.
1989, 1992). Most evidence suggests that NPY’s anxi-
olytic-like action is mediated by Y1 receptors, as the
C-terminal fragment of NPY does not produce anxiolytic
effects (Heilig et al. 1989) and antisense oligonucleotides
targeted to the Y1-receptor message produce marked
signs of anxiety when injected into the brain (Wahlestedt
et al. 1993). Some progress has also been made in the elu-
cidation of the brain site responsible for NPY’s anxiolytic
actions, as local microinjections of NPY into the central
nucleus of the amygdala have been found to produce
anxiolytic effects without inducing concomitant changes
in food intake (Heilig et al. 1993). In addition, antisense
inhibition of Y1 receptor expression not only blocks the
anxiolytic-like action of NPY, in the amygdala, but also
paradoxically increases feeding behaviors (Heilig 1995).
Recent studies have postulated that feeding behavior
may be modulated by the Y5 receptor (Gerald et al. 1996).

Whereas much progress has been made in describing
NPY’s behavioral effects, still little is known concerning

the electrophysiological actions of NPY in the central
nervous system in vivo. In one study, cortical EEG was
evaluated by visual inspection of polygraph records in
five rats (Fuxe et al. 1983). In that study it was found
that NPY produced a reduction in desynchronized ac-
tivity, an increase of synchronized activity and an in-
crease of mixed activity. While this study provides
valuable information demonstrating that NPY has an
effect on general brain activity, the data are somewhat
limited. For instance, it is not known whether NPY pro-
duces specific effects on certain frequency bands or
whether it produces effects in brain areas other than
cortex. In addition, because of the limitations of visual
inspection of the EEG it is not certain whether the elec-
trophysiologic effects of NPY resemble the well known
profile of anxiolytics. In the present study, we sought to
further elucidate the effects of NPY, as well as as spe-
cific Y1 and Y2 agonists, on brain electrical activity using
quantitative power spectral analysis of EEG recordings
in awake, behaving animals. We also investigated NPY’s
effects on auditory processing and stimulus discrimina-
tion using an event-related potential (ERP) paradigm.

 

METHODS

Subjects and Surgery

 

Male Wistar rats (Charles River) weighing from 260–375 g
were used as experimental subjects. The rats were housed
in pairs with food and water ad lib on a 12-h light/dark
cycle (lights on at 6:00 a.m.). At least 3 weeks before the ex-
perimental procedures, rats were anesthetized with Nem-
butal (50 mg/kg 
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 5 mg intraperitoneally), and recording
electrodes were stereotaxically implanted according to the
atlas of Pellegrino et al. (1979). One screw electrode was
placed in the calvarium overlying the frontal cortex and
one overlying the parietal cortex. Unipolar electrodes
made of stainless wire (0.25 mm in diameter) were placed
in the dorsal hippocampus (DHPC) (AP 
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 3.0, ML 
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 3.0,
and DV 
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 3.0) and the anterior amygdaloid complex
(AMYG) (AP 

 

2

 

 1.0, ML 
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 5.3, DV 
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 8.5). A grounded ref-
erence electrode was placed in the thick bony area of the
calvarium 3 mm posterior to lambda, which lies parallel to
the cerebellum. One stainless steel cannula (23 gauge) was
placed in the lateral ventricle for intracerebroventricular
(ICV) injections (AP 
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 0.6, ML 
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 2.0, DV 
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 3.2). The elec-
trode connections were then made to a multipin (Amphe-
nol) connector and the entire assembly was anchored to
the skull with dental cement.

 

EEG Recording Procedure

 

For EEG recordings, the rats are moved from the vivar-
ium in their home cage, and the cage was placed in an
electrically shielded, light, sound, and temperature con-
trolled BRS/LVE recording chamber. Rats were adapted



 

36

 

C.L. Ehlers et al. N

 

EUROPSYCHOPHARMACOLOGY

 

 

 

1997

 

–

 

VOL

 

. 

 

17

 

, 

 

NO

 

. 

 

1

 

to the chamber before the commencement of the experi-
mental procedures. All studies were carried out be-
tween 9:00 a.m. and 2:00 p.m. A connector attached to a
microdot cable was used to transfer the monopolar
(referred to the lambda ground screw) EEG signals to a
polygraph (GRASS). The bandpass for the EEG record-
ings was set at 1 to 70 Hz with a 60-Hz notch filter in, and
the signals were amplified with a 50% gain. For quanti-
fication of the EEG, 40 minutes of EEG were digitized
(128 Hz) and the power spectra of continuous 4-s epochs
determined for a 0.25–64 Hz range. The Fourier-trans-
formed data were then further compressed into eight
frequency bands (1–2, 2–4, 4–6, 6–8, 8–16, 16–32, 32–50,
1–50 Hz). Mean power density was calculated in micro-
volts squared per octave and peak frequency was calcu-
lated in Hz. Mean spectral power density over a band
was defined as the total power in the band divided by
the width of the band In addition to mean spectral
power, the coefficient of variation of mean power (o-/x),
a measure of the “stability” of the EEG was also esti-
mated. Details of the spectral analyses procedures have
been previously described (see Ehlers and Havstad 1982).

ERPs were recorded immediately after the 40-min EEG
recording. For ERP recordings, the EEG signal was filtered
online with the lowpass filter set at 35 Hz and the high-
pass filter set at 0.3 Hz. Free field auditory stimuli were
presented through a small speaker centered approxi-
mately 20 cm above the rat’s head. ERPs were elicited with
an acoustic “oddball” plus novel paradigm. The tones
were generated by a programmable multiple-tone genera-
tor, the characteristics of which have been described previ-
ously (Polich et al. 1983). The acoustic parameters for this
paradigm were two square wave tones (rise/fall times

 

,

 

1 ms): a frequent tone (20 ms, 1 kHz, 70 dB SPL) pre-
sented on 84% of the trials and an infrequent tone (20 ms,
2 kHz, 85 dB SPL) presented on 10% of the trials, and a
novel noise burst (20 ms, noise, 100 dB SPL) presented on
6% of the trials. The total number of trials in a recording
session was 312. Infrequent tones were interspersed with
frequent tones, such that no two infrequent tones occurred
successively; the noise burst occurred every 16th trial. The
digitized epoch for each trial was 1 s and a 0.5–1 s intertrial
interval was used in order to reduce habituation.

ERP trials were digitized at a rate of 256 Hz. Trials
containing excessive movement artifact were eliminated
(

 

,

 

10% of the trials) before averaging. An artifact rejec-
tion program was utilized to eliminate individual trials
in which the EEG exceeded 
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 400 

 

m

 

V. The ERP compo-
nents were then quantified by a computer-driven pro-
gram, which identified a peak amplitude (baseline-to-
peak) within a standard latency range. The baseline was
determined by averaging the 100-ms of prestimulus ac-
tivity obtained for each trial. The latency of a compo-
nent was defined as the time of occurrence of the peak
amplitude after the onset of the stimulus. The latency
windows were initially determined by visual inspection

of the data and then standardized to allow for computer
automated peak determinations. Components were la-
beled by their polarities and latency positions relative
to each other. The latency windows for the frontal cor-
tex were: N10, 0–25; P1, 25–75; N1, 50–150; N2, 150–250.
The latency windows for the dorsal hippocampus were:
N10, 0–25; P1, 25–75; N1, 25–75; P2, 75–150; N2, 150–300;
P3A, 150–250; P3B, 250–450. The latency windows for
the amygdala were: N10, 0–25; P1, 25–75; N1, 50–100;
P2, 75–150; N2, 125–250; P3A, 200–300; P3B, 250–450.
These ERP analyses have been demonstrated previously
(Ehlers et al. 1991).

Electrophysiological (EEG and ERP) recordings were
obtained under seven conditions. In these conditions,
rats were treated before the EEG recordings with saline,
1.0, or 3.0 nmols of NPY, 1.0 or 3.0 nmols of the Y1 re-
ceptor agonist [Leu
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, Pro
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]-NPY, or 1.0 or 3.0 nmols of the
Y2 receptor agonist Des-AA

 

7–24

 

 dicyclo(2-27,28-32)[Glu

 

2,32

 

,
DAla
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, DDpr

 

27

 

, Lys

 

28

 

]-NPY all synthesized in the Pep-
tide Biology laboratory, Salk Institute (see Kirby et al.
1993). Peptides were dissolved in sterile saline and were
injected using a 30 gauge stainless steel injector con-
nected by a polyethylene tube to a 10-

 

m

 

l Hamilton sy-
ringe. A total volume of 5.0 

 

m

 

l was injected in 60 s allow-
ing 1 additional minute for diffusion of the substance
before removing the injector. Any rat with resistance to
flow into the ventricle, by gravity test, was eliminated
from the study. At least 1 week elapsed between peptide
injections. The different doses of NPY and the Y1 and Y2
agonists were given in a Latin square design to control for
the effects of order. The EEG paper records were scored
by hand for the presence of sleep (see Ehlers et al. 1986).

At the end of the experiment, rats were overdosed
with nembutal (100 mg/kg) and decapitated. The
brains were extracted, frozen, and sectioned (60 

 

m

 

). The
brain slices were then stained with cresyl violet and
carefully examined under a light microscope. Data from
rats with electrode placement found in unintended
brain sites were eliminated from the statistical analyses.

A total of 26 subjects completed the protocol and
were used in the statistical analyses. The final number
of subjects in each condition ranged from 11 to 20. Not
all subjects participated in each condition; each subject
received at least saline and two doses of peptide within
the latin square design. The effects of the two doses of
NPY and the Y1 and Y2 receptor agonists on the EEG,
ERPs, and amount of slow wave sleep were compared
with the effects of saline injections using one-way
within subjects ANOVAs.

 

RESULTS

EEG Data

 

No significant difference in amount of time spent in
slow wave sleep, as quantified by scoring the EEG
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paper records, was found when data from the saline
condition were compared to either dose of NPY or its
analogs. However, spectral analyses revealed that NPY
and its analogs did produce significantly different spec-
tral profiles, as compared to saline, that were brain
region specific.

The parent compound, NPY, produced dose-related
changes in EEG frequency and power. At the lower
dose (1.0 nmol), reductions in EEG power were noted
but did not meet significance in any brain region. How-
ever, at the higher dose (3.0 nmol) decreases in total
power over the entire frequency range (1–50 Hz) (F 
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 .055), as well as selective significant
reductions in the higher theta frequencies (6–8 Hz) (F 
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.025) were observed in frontal cortex
(see Figure 1). Reductions in power in higher frequen-
cies were also observed in the amygdala (8–16 Hz) (F 
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 .02; (16–32 Hz) (F 
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.02) but not in hippocampus.
Both doses of NPY were also found to provide shifts

in peak frequency within a frequency band. At the
lower dose, a significant slowing of delta (1–2 Hz) (F 
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22.9, 
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 .0001) frequencies in frontal cortex
was present. Slowing of higher theta frequencies (6–8
Hz) was found in frontal cortex, dorsal hippocampus
and amygdala (FCTX: F 
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 .004;
DHPC: F 
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 .001). Increases in peak power in the lower
theta frequencies were also found in frontal cortex (4–6
Hz) (F 
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 .02) and amygdala (F 
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 .004) at the 1.0 nmol dose of NPY. These
same shifts in frequency were observed at the 3.0 nmol
dose of NPY (1–2 Hz) (FCTX: F 
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.001); (4–6 Hz) (FCTX: F 
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 .04); (6–8
Hz) (FCTX: F 
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 5.6, 
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 1,13, 
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 , .03; DHPC: F 5 6.0, df 5
1,17, p , .03; AMYG: F 5 20.3, df 5 1,17, p , .0001). Ad-
ditional significant shifts toward increases in frequency
in the higher ranges (16–32 Hz) (FCTX: F 5 7.5, df 5
1,13, p , .02; DHPC: F 5 7.2, df 5 1,17, p , .015; AMYG:
F 5 6.2, df 5 1,17, p , .02); (32–50 Hz) (AMYG: F 5 5.3,
df 1,17, p , .035) were also noted.

The Y1 and Y2 receptor agonists also produced a
profile of frequency and power changes in the EEG. As
compared to saline injections, the lower dose (1.0 nmol)
of both the Y1 and Y2 receptor agonists caused overall
reductions in total spectral power in dorsal hippocam-
pus (1.0–50 Hz) (1 nmol Y1 agonist; F 5 4.6, df 5 1,12, p ,
.05); (1 nmol Y2 agonist: F 5 7.1, df 5 1,9, p , .03). Selec-
tive reductions in power in specific frequency bands in
dorsal hippocampus were also found. The Y1 agonist
produced decreases in the higher frequencies (6–50 Hz),
whereas the Y2 receptor agonist produced decreases in
low (1–2, 4–6 Hz) and higher (8–50 Hz) frequencies as
seen in Figure 2. The 3-nmol dose of the Y2 agonist did
not produce any effects on spectral power in any lead.
However, this dose of the Y1 agonist produced in-
creases in power in the low frequencies in all three
leads (1–2 Hz) (DHPC: F 5 6.6, df 5 1,12, p , .02;
AMYG: F 5 4.6, df 5 1,12, p , .05); (2–4 Hz) (FCTX: F 5
8.8, df 5 1,6, p , .03; DHPC: F 5 5.2, df 5 1,12, p , .04;
AMYG: F 5 5.8, df 5 1,12, p , .03); (4–6 Hz) (FCTX: F 5
7.5, df 5 1,6, p , .03; AMYG: F 5 6.3, df 5 1,12, p , .03)
as well as the spindle frequencies in cortex (8–16 Hz) (F 5
6.4, df 5 1,6, p , .05).

Similar shifts in peak frequency were found to those
observed with the parent compound after administra-

Figure 1. The effects of two
doses of NPY (1.0 nmol, hatched
bars; 3.0 nmol, solid bars) on EEG
spectral power in eight frequency
bands in frontal cortex. Signifi-
cant decreases in overall power
(1–50 Hz: F 5 4.4, df 5 1,13, p ,
.05) and in the higher theta fre-
quencies (6–8 Hz: F 5 6.4, df 5
1,13, p , .025) were noted at the
higher doses.
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tion of the Y1 agonist. At both doses, decreases in the
higher theta frequencies (6–8 Hz) were observed in dor-
sal hippocampus and amygdala (1 nmol, DHPC: F 5
18.0, df 5 1,12, p , .001, AMYG: F 5 10.7, df 5 1,12, p ,
.007); (3 nmol, DHPC: F 5 6.3, df 5 1,12, p , .03; AMYG:
F 5 12.2, df 5 1,12, p , .004). Increases in frequency in
the higher ranges were also seen after the 1.0 nmol dose
of the Y1 agonist (8–16 Hz) (FCTX: F 5 16.5, df 5 1,7, p ,
.005; DHPC: F 5 11.6, df 5 1.12, p , .005). The Y2 ago-
nist did not produce significant shifts in frequency at ei-
ther dose in any brain area.

The Y1 and Y2 agonists also produced significant
changes in the stability of the EEG. EEG stability is de-
fined as the coefficient of variation (CV,o-/x) of power
in a particular frequency band. Thus, if there are large
fluctuations (with respect to the mean) in power over
the recording period, the CV will go up and the EEG is
defined as being less stable. The Y1 agonist, like ethanol
and benzodiazepines, was found to produce a signifi-
cant dose-related decrease is EEG stability, whereas the
Y2 agonist produced significant dose-related increases
as seen in Table 1.

ERP Data

In this study, the presentation of auditory stimuli in the
form of infrequent and frequent tones produced a series
of waves, including N1 potentials in frontal cortex, and
P3 potentials in hippocampus and amygdala, which
could be averaged from the EEG and appeared substan-
tially similar to those we have reported previously (see
Figure 3).

The administration of NPY had site specific effects
on rat ERP components. A significant dose-dependent

reduction in the N1 component, recorded in frontal cor-
tex, to all three tones was a consistent finding as seen in
Figure 4. The Y1 and Y2 agonists also produced reduc-
tions in the amplitude of the N1 component in frontal
cortex but less potently. In the case of the Y1 agonist,
N1 amplitude decreases were seen to both doses but
only after the noise tone. The Y2 agonist produced re-
ductions in the N1 component, in frontal cortex, but
only significantly at the 1-nmol dose to the noise tone
and at the 3-nmol dose to the frequent and infrequent
tones, as also seen in Figure 4. The parent compound
also produced a significant reduction in the P3 compo-
nent of the ERP, in the amygdala, in response to the
noise tone at the 1 nmol dose (F 5 5.5, df 5 1,17, p ,
.03), but not significantly at the 3-nmol dose. No signifi-
cant changes in the late positive component were found
after administration of either the Y1 or Y2 agonist.

DISCUSSION

NPY has been shown to have some characteristics simi-
lar to those of anxiolytics. For instance, in the present
study, NPY was found to induce a slowing of high fre-
quency theta activities (6–8 Hz) concomitant with a
speeding up of low frequency theta (4–6 Hz) in cortex,
hippocampus and amygdala. We have previously dem-
onstrated, in Wistar rats, that low doses of the benzodi-
azepine receptor agonist, diazepam (1.5 mg/kg IP), also
produces the exact same effects on theta frequency
(Robledo et al. 1994). NPY at higher doses (3.0 nmol)
was also found to significantly reduce overall spectral
power (0.5–50 Hz) in cortex, and in the higher frequen-
cies (8–32 Hz) in the amygdala. Diazepam has also been
demonstrated to cause reductions in spectral power in

Figure 2. The effects of a 1-nmol dose
of the Y1 (hatched bars) and Y2 (solid bars)
agonists on EEG spectral power in eight
frequency bands in dorsal hippocam-
pus. Both compounds produced signifi-
cant reductions in spectral power over
the entire frequency range (Y1, 1–50 Hz:
F 5 4.57, df 5 1,12, p , .05) (Y2, 1–50 Hz;
F 5 7.11, df 5 1,9, p , .02).
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the slow frequencies in rat (Robledo et al. 1994) and in
monkey (Ehlers and Reed 1987), as well as in human
subjects during sleep (Borbely 1992).

The Y1 and Y2 agonists had a somewhat different
profile of EEG effects than the parent compound. The
3.0-nmol dose of the Y1 agonist produced decreases in
EEG stability, whereas the Y2 agonist produced in-
creases in EEG stability in cortex and amygdala. Gehr-
mann and Killam (1978) were the first to suggest that
benzodiazepines could be differentiated from other
sedative-hypnotics by measures of EEG stability in
rhesus monkeys. In subsequent studies in squirrel mon-
keys (Ehlers and Havstad 1982; Ehlers and Reed 1987),
it was confirmed that both diazepam and ethanol can
produce a decrease in EEG stability as characterized by
an increase in the coefficient of variation of selected fre-
quency bands. Similar EEG data have been described in
humans undergoing ethanol challenge (Ehlers et al.
1989). Taken together these data provide additional evi-
dence that NPY has an anxiolytic profile and further
that such actions may be preferential for the Y1 receptor.

NPY produces a different profile of EEG changes as
compared to other neuropeptides. ICV administration
of dynorphin (DYN) has been reported to produce EEG
desynchronization concomitant with increases in theta
activity, whereas arginine vasopressin (AVP) and neu-
rotensin both produce overall EEG dampening associ-
ated with increased “alertness” (Ehlers 1984; Ehlers et

al. 1985; Robledo et al. 1995). Corticotropin-releasing
factor (CRF), on the other hand, produced EEG activa-
tion followed by the appearance of epileptiform activity
(Ehlers et al. 1983). Additionally, growth hormone re-
leasing factor (GRF) has been found to enhance slow
waves during sleep (Ehlers et al. 1986). Thus, it appears
that NPY has a somewhat unique and specific EEG pro-
file compared to other peptides that have been evaluated.

NPY was also found to produce a significant dose-
dependent effect on processing of auditory stimuli as
assessed by event related potentials (ERPs). In human
subjects, a series of waves of differing polarity and am-
plitude designated “components” of ERPs are generally
obtained from the averaged EEG when a subject is
asked to discriminate a target stimulus from a series of
background stimuli or are presented frequently and in-
frequently occurring stimuli of different stimulus char-
acteristics (Roth 1973; Squires et al. 1975; Polich 1987).
One such component, which is negative in polarity and
occurs around 100 ms after the stimulus, is designated
the N1 or N100. In human patients, the N1 has been as-
sociated with arousal and attention as well as physical
aspects of the stimuli (see Hillyard and Kutas 1983).
Another component that is positive in polarity and oc-
curs at approximately 300 ms is called the P3 or P300.
The P3 component has been suggested to reflect stimu-
lus evaluation and memory function, (see Donchin and
Coles 1988; Verleger 1988). We have demonstrated that

Table 1. EEG Stability (Mean 6 SEM)

Frontal Cortex Dorsal Hippocampus

Band Saline 3nmol NPY I Saline 3nmol NPY I

1 0.534 6 0.013 0.623 6 0.031a 0.410 6 0.019 0.480 6 0.040a

2 0.454 6 0.040 0.662 6 0.063c 0.407 6 0.028 0.504 6 0.039c

3 0.432 6 0.023 0.560 6 0.046b 0.439 6 0.030 0.533 6 0.038a

4 0.442 6 0.024 0.557 6 0.033 0.355 6 0.017 0.399 6 0.021
5 0.298 6 0.012 0.399 6 0.053a 0.261 6 0.019 0.267 6 0.021
6 0.163 6 0.007 0.294 6 0.086 0.153 6 0.011 0.151 6 0.010
7 0.184 6 0.014 0.299 6 0.299 0.134 6 0.002 0.135 6 0.003
8 0.198 6 0.018 0.303 6 0.313b 0.184 6 0.016 0.226 6 0.022b

Frontal Cortex Amygdala

Band Saline 3nmol NPY II Saline 3nmol NPY II

1 0.625 6 0.049 0.499 6 0.030b 0.643 6 0.059 0.437 6 0.028c

2 0.722 6 0.054 0.490 6 0.037c 0.559 6 0.054 0.384 6 0.017c

3 0.772 6 0.081 0.495 6 0.039b 0.583 6 0.069 0.393 6 0.020a

4 0.633 6 0.041 0.512 6 0.056 0.522 6 0.060 0.990 6 0.042
5 0.527 6 0.053 0.432 6 0.082 0.368 6 0.057 0.223 6 0.022a

6 0.264 6 0.039 0.282 6 0.071 0.157 6 0.009 0.163 6 0.016
7 0.211 6 0.060 0.248 6 0.057 0.149 6 0.011 0.166 6 0.018
8 0.437 6 0.039 0.296 6 0.047b 0.311 6 0.045 0.156 6 0.016c

Values are mean 6 SEM.
a p , .05.
b p , .02.
c p , .01.
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long latency ERPs can be recorded from monkeys
(Ehlers 1988, 1989) and rats (Ehlers et al. 1991; Ehlers
and Chaplin 1992; Ehlers et al. 1994) when presented
“oddball” tone sequences. In rats, this paradigm has
been found to produce early negativities (N1s), as well
as late positivities in the 250–400 ms range in parietal
cortical areas, dorsal hippocampus, and amygdala that
are sensitive to stimuli characteristics (Ehlers and Chap-
lin 1992) and task (Ehlers et al. 1994).

The most prominent effects of NPY on auditory ERPs
were observed in frontal cortex where dose-dependent
decreases in the N1 component were observed. Y1 and
Y2 agonists were also found to significantly reduce the
amplitude of the N1 component of the ERP but less so

than the parent compound. Reductions in the N1 compo-
nent of the ERP have previously been reported to occur in
monkeys after administration of both diazepam and
ethanol (Ehlers 1988; Ehlers et al. 1992). Few studies
have evaluated the effects of neuropeptides on ERP
components. In one study neurotensin (NT) was found
to produce a dose-related increase in the amplitude and

Figure 3. Grand averages of ERPs in 20 rats. ERPs were
generated in response to three stimuli: a frequent tone pre-
sented on 84% of the trials (solid line), an infrequent tone pre-
sented on 10% of the trials (dotted line), and a novel noise
burst presented on 6% of the trials (dashed line). Note the
prominent negative component arising in frontal cortex with
a latency between 75 and 100 ms, designated the N1. In hip-
pocampus and amygdala a late positive component was
observed after the frequent and noise tone between 200 and
500 ms designated the P3.

Figure 4. The effects of two doses of: NPY (upper panel), the
Y1 agonist (middle panel), and the Y2 agonist (lower panel) on
the amplitude of the N1 component of the rat ERP recorded
in frontal cortex. In each panel, the first set of bars represents
the frequent tone, the second set the infrequent tone, and the
third the noise tone. The doses are represented in each panel
by hatched bars (1.0 nmol), and solid bars (3.0 nmol). All three
compounds were found to produce significant reductions in
N1 components (e.g., noise tone: 1 nmol NPY: F 5 6.9, df 5
1,15, p , .02; 1 nmol Y1: F 5 6.0, df 5 1,10, p , .03; Y2: F 5
12.5, df 5 1,10, p , .005).
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the area of the rat N1 particularly after the noise burst, a
finding exactly opposite to that observed in the present
study. These findings suggest that NPY-induced reduc-
tions in the N1 component do not reflect nonspecific ef-
fects of administration of neuropeptides into the brain.
In humans, it has been hypothesized that the auditory
N1 component may be an index of attention or the
amount of signal information received by the detecting
system. For instance, increases in the amplitude of this
component have been observed when subjects report a
higher confidence in signal detection (Hillyard and Ku-
tas 1983). Therefore, the results observed in this study
suggest that NPY may be reducing the salience of audi-
tory stimuli in rats especially to loud, novel stimuli.

Another finding in this study was that NPY, at
higher doses, produced a reduction in the late positive
potential designated as P3, but only in the amygdala.
We have not found that benzodiazepines produce
changes in the P3 component of the ERP. However, eth-
anol has been found to decrease the amplitude of the P3
component at higher doses in cortical areas (Ehlers
1988). In humans, increases in the amplitude of the P3
to passive novel stimuli have been associated with anxi-
ety produced by threat (Grillon and Ameli 1994). It is
possible that reductions in P3 in amygdala may reflect
the potential for NPY to dampen “threatening” or
“emotional” stimuli. Such suggestions would be consis-
tent with behavioral studies demonstrating anxiolytic
effects of NPY when administered directly into the cen-
tral nucleus of the amygdala (Heilig et al. 1993).

In conclusion, the electrophysiological and behav-
ioral profile of NPY and the Y1 agonist resemble those
of anxiolytics such as ethanol and benzodiazepines. It
has been suggested, based mainly on behavioral and
anatomical data, that NPY receptors may prove poten-
tial therapeutic drug targets (Wahlestedt and Reis
1993). Taken together, these data provide additional ev-
idence that NPY has an anxiolytic profile and in addi-
tion that electrophysiological measures of the actions of
this peptide system may eventually provide useful as-
says for the development of anxiolytic drugs.
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