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Deficits in prepulse inhibition (PPI) of startle, an operational measure of sensorimotor gating, are characteristics of schizophrenia and
related neuropsychiatric disorders. Previous studies in mice demonstrate a contribution of dopamine (DA) D,-family receptors in
modulating PPl and DA D, receptors (D2R) in mediating the PPl-disruptive effects of amphetamine. To examine further the
contributions of DA receptor subtypes in PPl, we used a combined pharmacological and genetic approach. In congenic C57BL/6 | wild-
type mice, we tested whether the DIR antagonist SCH23390 or the D2/3R antagonist raclopride would attenuate the effects of the
indirect DA agonist cocaine (40 mg/kg). Both the D IR and D2/3R antagonists attenuated the cocaine-induced PPI deficit. We also tested
the effect of cocaine on PPl in wild-type and DA DIR, D2R, or D3R knockout mice. The cocaine-induced PPl deficit was influenced
differently by the three DA receptor subtypes, being absent in DIR knockout mice, partially attenuated in D2R knockout mice, and
exaggerated in D3R knockout mice. Thus, the DIR is necessary for the PPIl-disruptive effects of cocaine, while the D2R partially
contributes to these effects. Conversely, the D3R appears to inhibit the PPI-disruptive effects of cocaine. Uncovering neural mechanisms
involved in PPl will further our understanding of substrates of sensorimotor gating and could lead to better therapeutics to treat complex

cognitive disorders such as schizophrenia.

INTRODUCTION

Prepulse inhibition (PPI) is a cross-species measure of
sensorimotor gating in which startle magnitude is reduced
when the startling stimulus is preceded by a low-intensity
prepulse (Hoffman and Ison, 1980). PPI deficits are
observed in psychotic disorders, such as schizophrenia,
and are associated with dopamine (DA) dysregulation (Braff
et al, 2001; Swerdlow et al, 2001). PPI deficits are modeled
in mice and rats following treatment with psychotomimetic
drugs, such as d-amphetamine, cocaine, or phencyclidine
(Geyer et al, 2001).

Similar to the rat, the DA D, receptor (D2R) subtype is
necessary for amphetamine-induced PPI disruptions in
mice, while the DA D; (D1R), D; (D3R), and D, (D4R)
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receptor subtypes are not (Ralph et al, 1999; Ralph-
Williams et al, 2002). DA D,-like agonists quinpirole and
quinelorane failed to disrupt PPI in several strains of mice
(Ralph-Williams et al, 2003; Ralph and Caine, 2005),
although quinelorane can disrupt PPI in some mouse
strains (Ralph and Caine, 2007). Relative to the rat, the D1R
plays a more prominent role regulating PPI in mice (Geyer
et al, 2002; Ralph-Williams et al, 2003; Ralph and Caine,
2005). The DIR antagonist SCH23390 blocks the PPI-
disruptive effect of the direct DA agonist apomorphine in
mice, and D;-family agonists such as SKF82958, SKF81297,
and dihydrexidine reduce PPI in mice, supporting the idea
that DIR activation is sufficient to produce PPI disruptions
in mice (Holmes et al, 2001; Ralph-Williams et al, 2002,
2003). Thus, the roles of DA receptor subtypes in the
modulation of PPI in mice appear to differ from those
observed in rats.

Cocaine is an indirect DA agonist, which inhibits the
reuptake of DA in the synapse, producing behavioral
stimulation and precipitating psychosis after sustained use
in humans (Bolla et al, 1998). Acute cocaine administration
disrupts PPI in rats (Martinez et al, 1999; Byrnes and
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Hammer, 2000) and mice (our unpublished data; Yamashita
et al, 2006) at high doses. Other studies, however, have
failed to show an acute effect of cocaine on PPI in rats
(Varty and Higgins, 1998). The behavioral effects of cocaine
appear to be mediated by both D;- and D,-family receptors.
D2Rs regulate the increase in extracellular DA concentra-
tions elicited by cocaine (Rouge-Pont et al, 2002). The D2/
3R antagonist raclopride blocked the locomotor-stimulating
effects of cocaine in mice (Chausmer et al, 2002). Xu and
colleagues (Xu et al, 1994, 2000; Xu, 1998) found that DIR
knockout (KO) mice exhibit an attenuated locomotor
response after acute or repeated cocaine and proposed that
D3Rs modulate responses to psychostimulants by inhibiting
the cooperative effects of postsynaptic D,;- and D,-family
receptors. Carta et al (2000) reported that D3R KO mice
show enhanced locomotor activity following cocaine
administration. The DIR activates and the D3R inhibits
gene expression of extracellular kinases and c-fos induction
after acute and chronic cocaine treatment (Zhang et al,
2004). Taken together, these reports suggest that all three
DA receptor subtypes regulate the behavioral effects of
cocaine and that they may exert different influences on
behavior. To examine contributions of the DA DIR, D2R,
and D3R subtypes to cocaine-induced deficits in acoustic
startle response (ASR) and PPI, we pretreated WT mice with
the DIR antagonist SCH23390 or the D2/3R antagonist
raclopride, in addition to testing DIR, D2R, and D3R KO
mice.

MATERIALS AND METHODS
Animals

Incipient congenic DIR, D2R, and D3R mutant mice were
bred and genotyped at Oregon Health & Science University
(OHSU) and shipped to the University of California, San
Diego (UCSD) for testing. Before testing, mice had a
minimum 2-week resting period to acclimate to our
facilities to minimize any influences of travel. The wild-
type (WT) mice used for the pharmacological experiment
were taken from a cohort of D2R mice. WT mice from DI1R,
D2R, or D3R cohorts display no difference in PPI or ASR
(Ralph et al, 1999).

A colony of DIR mutant mice (Drago et al, 1994) was
originally established at OHSU from breeding stock of
B6.12954-Drd1a"™V°d male mice obtained from The Jackson
Laboratory (Bar Harbor, ME). The heterozygous (HET)
mice had been backcrossed for a minimum of five
generations onto the inbred C57BL/6] line before importa-
tion and were then backcrossed for two additional
generations in Portland (OHSU, Vollum Institute) to
produce incipient congenic (N7) mice. N7 C57BL/6] D1R
HET breeding pairs were used to generate the mice for
behavioral studies. Because the D1IR KO mice were growth-
retarded (Drago et al, 1994), pups were not weaned from
their mothers until 4 weeks of age and were then provided
with moistened chow until approximately 8 weeks of age to
maximize growth. The DIR mice were genotyped by PCR
using a protocol and primer sequences provided by The
Jackson Laboratory.

The D2R mutant mice (Kelly et al, 1997, 1998), official
strain designation B6.129S2-Drd2"™'"*", were originally
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generated at OHSU and backcrossed for 14 generations
(N14) onto the inbred C57BL/6] line. N14 C57BL/6] D2R
HET breeding pairs were used to generate fully congenic
mice used in behavioral studies. Both sexes of D2R KO mice
were smaller than their WT siblings at the time of weaning,
but they did not require special attention or moistened
chow. The D2R KO mice later achieved weight close to that
of the WT mice. D2R mice were genotyped by PCR
according to the protocol previously described (Diaz-Torga
et al, 2002).

D3R mutant mice (Accili et al, 1996), original strain
B6.12954-Drd3™P%¢ were also imported from The Jackson
Laboratory. The mice were incipient congenic (N5 C57BL/6]
D3R), having been backcrossed five times with the inbred
strain C57BL/6] at the time of importation. The colony was
established at OHSU and backcrossed for two more
generations with the C57BL/6] to generate N7 D3R mice.
N7 C57BL/6] D3R HET breeding pairs were used to generate
mice for behavioral studies. All the mice were viable and
fertile and no altered growth phenotype was present in these
mutant mice. D3R mice were genotyped by PCR using a
protocol and primer sequences provided by the Jackson
Laboratory.

Testing

At UCSD, mice were housed in a climate-controlled animal
colony with a reversed day/night cycle (lights on at 2000
hours, off at 0800 hours). All behavioral testing was
performed on mice between 7 and 33 weeks of age and
occurred between 0900 hours and 1700 hours daily. Food
(Harlan Teklab, Madison, WI) and water were available ad
libitum, except during behavioral testing. All behavioral
testing procedures were approved by the UCSD institutional
animal care and use committee prior to the onset of the
experiments. Mice were maintained in American Associa-
tion for Accreditation of Laboratory Animal Care approved
animal facilities at UCSD. This facility meets all Federal and
State requirements for animal care.

Drugs

SCH23390 HCl was dissolved in sterile water at a
concentration of 0.2mg/ml and a dose of 1.0mg/kg was
given subcutaneously 10 min before cocaine administration.
Raclopride tartrate was dissolved in 0.9% saline at a
concentration of 0.6mg/ml and a dose of 3.0 mg/kg was
given intraperitoneally 10 min before cocaine administra-
tion. Cocaine HCl was dissolved in 0.9% saline at a
concentration of 8 mg/ml and a dose of 40.0 mg/kg was
given intraperitoneally 5min before behavioral testing. All
three drugs were obtained from Sigma/RBI (St Louis, MO)
and injected at a volume of 5 ml/kg body weight. The doses
of SCH23390, raclopride, and cocaine were chosen based on
pilot studies in C57BL/6] mice from our lab, as well as
Yamashita et al (2006), for cocaine.

Apparatus

Startle reactivity was measured using eight startle chambers
(SR-LAB, San Diego Instruments, San Diego, CA). Each
chamber consisted of a clear nonrestrictive Plexiglas
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cylinder (inner diameter =38 cm) resting on a platform
inside a ventilated box. A high-frequency loudspeaker
inside the chamber produced both a continuous back-
ground noise of 65dB and the various acoustic stimuli.
Vibrations of the Plexiglas cylinder caused by the whole-
body startle response of the animal were transduced into
analog signals by a piezoelectric unit attached to the
platform. These signals were then digitized and stored by a
computer. Sixty-five readings were taken at 1 ms intervals,
starting at stimulus onset, and the average amplitude was
used to determine the ASR. The SR-LAB calibration unit
was used routinely to ensure consistent stabilimeter
sensitivity between test chambers and over time, and sound
levels in dB SPL (A scale) were measured as described
previously (Geyer and Dulawa, 2003).

PPI Session

All PPI test sessions consisted of startle trials (PULSE-
ALONE), prepulse trials (PREPULSE + PULSE), and no-
stimulus trials (NOSTIM). The PULSE-ALONE trial con-
sisted of a 40-ms 120-dB pulse of broad-band noise.
PREPULSE + PULSE trials consisted of a 20-ms noise
prepulse, 80 ms delay, then a 40-ms 120-dB startle pulse
(100 ms onset to onset). The acoustic prepulse intensities
were 69, 73, and 81dB (ie 4, 8, and 16 dB above the 65-dB
background noise). The NOSTIM trial consisted of back-
ground noise only. The test session began and ended with
five presentations of the PULSE-ALONE trial; in between,
each acoustic or NOSTIM trial type was presented 10 times
in a pseudo-random order. There was an average of 15s
(range: 12-30 s) between trials. A background noise level of
65dB was presented for a 10-min acclimation period and
continued throughout the test session.

Data Analyses

For receptor comparison purposes, ASR and PPI were
analyzed during the initial half of the session, where a
significant cocaine effect occurred in all WT mice. Unless
otherwise indicated, data were collapsed across sex when
there were no interactions of cocaine treatment with sex.
The amount of PPI was calculated as a percentage score for
each acoustic prepulse trial type: % PPI=100—{[(startle
response for PREPULSE + PULSE)/(startle response for
PULSE-ALONE)] x 100}. For brevity, data are presented as
the average % PPI across the three prepulse intensities
tested because of a lack of a treatment x intensity effect
during analysis. The magnitude of the ASR was calculated as
the average response of the PULSE-ALONE trials, excluding
the first block of five PULSE-ALONE trials presented. Data
from the NOSTIM trials are not included in the Results
section because the values were negligible relative to values
on trials containing startle stimuli.

Pharmacological Blockade of Cocaine Effects on PPI

The WT cohort consisted of 16 male and 15 female mice.
The mice were first characterized in a session to establish
their baseline startle magnitude and PPI levels. They were
then assigned to their drug treatment groups (40.0 mg/kg
cocaine or vehicle), balanced for baseline startle magnitude,
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PPI, and startle chamber assignment. The mice were tested
in a three-way crossover design with 1 week between tests.
Each animal always received either vehicle or cocaine as
their treatment over the three tests. For the pretreatment,
each animal received vehicle, 1.0mg/kg SCH23390, or
3.0mg/kg raclopride in a semi-randomized, counterba-
lanced order, to complete a within-subject design. Thus,
treatment was the between-subject variable and pretreat-
ment was a within-subject variable. A two-way analysis of
variance (ANOVA) was used to compare means, and the
o-level was adjusted to P<0.025 to accommodate the
removal of treatment as a factor in the post hoc ANOVAs.
The computations were carried out using the BMDP
statistical software (Statistical Solutions Inc., Saugus, MA).

Effects of Cocaine in D1R, D2R, and D3R WT and KO
Mice

The D1R cohort consisted of 15 WT and 7 KO male mice,
and 10 WT and 7 KO female mice. The D2R cohort
consisted of 28 WT and 18 KO male mice, and 16 WT and
30 KO female mice. The D3R cohort consisted of 9 WT and
9 KO male mice, and 10 WT and 10 KO female mice. The
cohorts were characterized initially in a session to establish
their baseline startle magnitude and PPI levels. They were
then assigned to their drug treatment groups (40.0 mg/kg
cocaine or vehicle), balanced for baseline startle magnitude,
PPI, and startle chamber assignment. The cohorts
were tested in a semi-randomized, crossover design.
After the first treatment, the mice were tested 1-2 weeks
later to counterbalance for treatment, to complete
a within-subject design. In the statistical analyses, genotype
was the between-subject variable and drug was a within-
subject variable. A two-way ANOVA was used to compare
means and the a-level was adjusted to P<0.025 to
accommodate the removal of genotype as a factor in the
post hoc ANOVAs.

RESULTS

D1 or D2/3 Antagonist Interactions with Cocaine

Cocaine (40 mg/kg) produced PPI deficits in WT mice
compared to vehicle pretreated controls (F(;,,9)=10.0;
P<0.01) (Figure 1). Pretreatment with SCH23390 (1.0 mg/
kg), a DIR antagonist, attenuated the PPI deficit produced
by cocaine as evidenced by a main effect of pretreatment
(F1,290=22.6; P<0.01) and a pretreatment X treatment
interaction (F(1,,9) = 12.7; P<0.01) (Figure 1). Pretreatment
with raclopride (3.0mg/kg), a D2/3R antagonist, also
attenuated the PPI deficit produced by cocaine as evidenced
by a main effect of pretreatment (F(;, 59 =15.2; P<0.01)
and a pretreatment X treatment interaction (F(;,,9)=8.2;
P<0.01) (Figure 1). There were no effects of cocaine on ASR
in WT animals, regardless of pretreatment with vehicle,
SCH23390, or raclopride (Table 1). There was a main effect
of sex on ASR with male mice exhibiting higher startle than
female counterparts in all experiments, regardless of
genotype (P <0.05).



D; Receptor Mice

There was a significant effect of cocaine (F(;, 37 =11.6;
P<0.01) and a genotype X cocaine interaction (F;,37) = 4.6;
P<0.05) on PPI in DI1R mice. Post hoc ANOVAs revealed
that cocaine (40 mg/kg) significantly reduced PPI in D1R
WT mice (F(;,24)=15.1; P<0.01), but was ineffective in
DIR KO mice (Figure 2a). Regardless of sex or drug
treatment, DIR KO mice showed higher startle responses
compared to WT control mice (Fq,37=7.6; P<0.01)
(Table 1).

D, Receptor Mice

Cocaine (40 mg/kg) produced PPI deficits in both D2R WT
and KO mice (main effect of cocaine, F(;, 99y =73.9; P<0.01)
(Figure 2b). Nevertheless, there was a genotype x cocaine
interaction (F(;, 99y = 5.2; P<0.05), indicating that there was
a significant difference in the magnitude of the PPI-
disruptive effects of cocaine between the two genotypes.
Specifically, the PPI-disruptive effects of cocaine were
attenuated in D2R KO mice compared to WT mice. Cocaine
significantly reduced ASR in male D2 WT mice only
(drug x sex x gene interaction F(; g3y=4.8; P<0.05). Fe-
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Figure | Prepulse inhibition of the startle response in WT mice after
pretreatment with vehicle (VEH), 1.0 mg/kg SCH23390 (SCH) or 3.0 mg/kg
raclopride (RAC) and treatment with vehicle or 40.0 mg/kg cocaine
(COC). Cocaine decreased PPl in WT mice and both SCH23390 and
raclopride attenuated the cocaine-induced PPI deficit. *P<0.01 compared
to vehicle control. Data are presented as mean £ SEM.
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male D2R KO mice exhibited reduced startle compared to
WT littermates, regardless of drug treatment (sex X gene
interaction F(; gy =4.4; P<0.05) (Table 1).

D; Receptor Mice

Cocaine (40 mg/kg) produced PPI deficits in both D3R WT
and KO mice (main effect of cocaine, F(;, 35y =53.8; P<0.01)
(Figure 2c). In addition, there was a genotype x cocaine
interaction (F(;, 36y = 6.1; P<0.01), indicative of a significant
difference in the magnitude of the cocaine-elicited PPI
deficit between the two genotypes. In contrast to the pattern
observed with D2R mice, the PPI-disruptive effects of
cocaine were exaggerated in D3R KO mice compared to WT
animals. Cocaine had no effect on ASR in either gender,
although there were significant main effects of sex
(F1,34)=9.8; P<0.01) and genotype (F(,34=11.0;
P<0.01). Female mice exhibited lower ASR than their male
counterparts and D3R KO mice had a lower ASR compared
to WT mice (Table 1).

DISCUSSION

In support of our hypotheses, the results indicated that all
three DA receptor subtypes contributed to the PPI-
disrupting effects of cocaine in mice, although differentially.
First, both the D1R antagonist SCH23390 and the D2/3R
antagonist raclopride completely attenuated the PPI dis-
ruption produced by cocaine in WT mice. Second, mice
lacking the D1R exhibited no cocaine-induced PPI deficits,
suggesting that the DIR subtype is necessary for the PPI
disruption caused by cocaine. Third, mice lacking the D2R
displayed attenuated cocaine-induced PPI deficits, suggest-
ing that activation of the D2R subtype contributes to the PPI
disruption caused by cocaine. Fourth, mice lacking the D3R
displayed exaggerated cocaine-induced PPI deficits, sug-
gesting that activation of the D3 receptor subtype serves to
inhibit the PPI disruption caused by cocaine. Each DA
receptor subtype appears to be differentially modulating
cocaine-induced PPI disruptions as seen by the lack of
response in DIR KO mice, a weak response in D2R KO
mice, and an exaggerated response in D3R KO mice.

Mice lacking the DA DIR or those administered the DIR
antagonist SCH23390 failed to show a cocaine-induced
disruption in PPI. These observations corroborate and

Table | Acoustic Startle Response after Treatment with Vehicle or Cocaine (40.0 mg/kg)

WT DIR D2R D3R
ASR VEH SCH RAC WT KO WT KO WT KO
VEH 763+ 133 664+ 154 62.7+ 105 592+ 106 844+ 135 13113 75277 81.9+9.0 56.5+9.6
COoC 557+ 104 555+ 105 67.7+ 155 43.1£67 838+ 125 758+77 668172 84.1 £ 14.8 434162

Similar to PPI, acoustic startle response (ASR) has been collapsed across sex, given that the only interaction of sex with cocaine treatment occurred in male D2 WT
mice (see the Results section). Female mice exhibited less startle reactivity than male mice in all genotypes. Cocaine (COC) had no effect on ASR in the WT cohort
pretreated with vehicle (VEH), 1.0 mg/kg SCH23390 (SCH), or 1.0 mg/kg raclopride (RAC). Cocaine had no effect on ASR in DIR and D3R mice. In D2R mice,
cocaine decreased startle magnitude in male WT animals compared to vehicle controls. Additionally, D IR KO and D3R KO mice exhibited more and less startle than
their WT littermates, respectively. D2R KO females also exhibited less startle than female WT mice, but this effect was not replicated in the males (for statistics see the
Results section). Data are presented as mean + SEM startle magnitudes in arbitrary units.
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Figure 2 Prepulse inhibition of the startle response in DIR, D2R, and
D3R mutant mice after vehicle (VEH) or 40.0mg/kg cocaine (COCQC)
treatment. (a) Cocaine decreased PPl in the DIR WT mice but not in the
D IR KO mice. (b) Cocaine decreased PPl in both D2R WT and KO mice.
In addition, D2R KO mice exhibited less disruption in PPl than D2R WT
mice after cocaine treatment. (c) Cocaine decreased PPl in both D3R WT
and KO mice. In addition, D3R KO mice exhibited a greater disruption in
PPI than D3R WT mice after cocaine treatment. *P<0.0| compared to
vehicle control. #P<0.025 vs WT-COC. Data are presented as mean
+ SEM.

extend previous studies of mutant mice lacking the DIR,
which demonstrated that D1Rs play a critical role in
mediating the behavioral responses to cocaine. Both the
acute, and to a lesser extent, chronic locomotor-stimulating
effects of cocaine are reduced in DIR KO mice (Xu et al,
1994, 2000). DIR agonists and antagonists can influence
locomotor and stereotyped responses to cocaine and alter
cocaine self-administration patterns (Koob et al, 1987;
Cabib et al, 1991; Caine and Koob, 1994; Tella, 1994; Self
et al, 1996). Moreover, D,-like antagonists and partial
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agonists attenuated the reinforcing and discriminative-
stimulus effects of cocaine (Katz and Witkin, 1992; Speal-
man et al, 1997; Katz et al, 1999; Caine et al, 2000; David
et al, 2004). Consistent with these observations in different
behavioral paradigms, the present studies of PPI corrobo-
rate our previous evidence (Ralph-Williams et al, 2002,
2003) suggesting that activation of the DIR is essential for
the PPI-disruptive effects of either cocaine or mixed DA
agonists.

In addition to the essential role of the DIR in the PPI-
disruptive effect of cocaine, the present results support a
model in which the activation by cocaine of both D2R and
D3R also contribute in modulating PPI. Mice lacking the DA
D2R exhibit attenuated cocaine-induced PPI deficits, while
mice administered the D2/D3R antagonist raclopride fail to
show a cocaine-induced disruption in PPI. The D2R has a
direct protein-to-protein link to the presynaptic DA
transporter (Lee et al, 2007), known to regulate dopami-
nergic tone, which could explain the attenuated cocaine-
induced PPI deficits in D2R KO mice. These observations
are consistent with the proposal by Xu (1998) that D3Rs
modulate the response to psychostimulants by inhibiting
the cooperative effects of postsynaptic D,- and D,-family
receptors (Daly and Waddington, 1992) at a systems level.
In D2R KO mice, the weaker response to cocaine compared
to WT animals may be attributed to the intact activation of
DIR, which is partially attenuated by the opposing influence
of the cocaine-induced activation of D3R. In contrast, the
blockade of both D2R and D3Rs by raclopride clearly
prevented the cocaine-induced activation of DIR from
affecting PPI. Thus, it appears that co-activation of either
D2R or D3R is required for the activation of D1R by cocaine
to disrupt PPI. When only one of these D,-family receptors
was inactivated by gene deletions, the cocaine-induced
activation of DIR was effective in disrupting PPI. The data
from the current study suggest that activation of DIR by
cocaine is necessary but not sufficient to disrupt PPI in
mice.

Despite the present and previous evidence that some
behavioral consequences of cocaine-induced activation of
DIR require the concomitant activation of either the D, or
D; subtypes of the D,-family of DA receptors, the present
findings further suggest that the permissive influences of
D2R and D3R in this context are opposite in direction. That
is, in contrast to the D2R KO mice, mice lacking the DA
D3R exhibited exaggerated cocaine-induced PPI deficits.
One explanation could be that the elevated basal extra-
cellular DA levels in D3 KO mice (Koeltzow et al, 1998;
Joseph et al, 2002) could lead to the increased sensitivity to
cocaine observed here in our D3 KO mice. There also seems
to be opposing effects between the DIR and the D3R on the
genomic effects of cocaine. The D1R activates and the D3R
inhibits gene expression of extracellular kinases and c-fos
induction after acute and chronic cocaine treatment (Zhang
et al, 2004). Our results corroborate this hypothesis, as DIR
KO mice display no cocaine-induced PPI deficits while D3R
KO mice exhibit exaggerated cocaine-induced PPI deficits.
These results corroborate and extend previous studies of
psychostimulant effects in D3R KO mice. For example, D3R
KO mice exhibit an enhanced locomotor response after
cocaine administration (Carta et al, 2000) and D3R
antagonists augment cocaine (Piercey et al, 1992) and



amphetamine-stimulated locomotion (Waters et al, 1993;
Pritchard et al, 2007). D3R KO mice also exhibit an increase
in cocaine cue-conditioned hyperactivity and cocaine cue-
conditioned mice had increased levels of D3R mRNA in the
nucleus accumbens compared to saline controls (Le Foll
et al, 2002). It should be noted, however, that the effects of
agonists and antagonists having preferential affinities for
D3R over D2R are not entirely consistent with the effects
observed with the more specific genetic manipulations of
these receptor subtypes (eg Corbin et al, 1998; Le Foll et al,
2002; Xi et al, 2005). The development of more subtype-
selective D,-family ligands or perhaps a double KO mouse
in which both D2R and D3R are deleted would help to
clarify the respective roles of these DA D,-family receptor
subtypes in modulating the effects of cocaine and other
psychostimulants.

The contradictory literature on the behavioral effects of
D2R vs D3R agonists and antagonists may also be a
reflection of regional differences in receptor subtype
expression. Comparing between the two subtypes, the D2R
exhibits higher expression in dorsal striatum, substantia
nigra, and ventral tegmental area, whereas the D3R exhibits
higher expression in nucleus accumbens (Callier et al,
2003). Also, differential pre- vs postsynaptic expression of
the receptor subtypes in brain regions important for PPI
may contribute to different effects on PPIL

Since both amphetamine and cocaine are indirect DA
agonists that increase synaptic DA concentrations, it is
puzzling that the D2R, not the DIR, is necessary for
amphetamine to disrupt PPI (Ralph et al, 1999), while
cocaine does not disrupt PPI in DIR KO mice. The DA
transporter is an obligatory target of both cocaine and
amphetamine, but there is conflicting evidence on psychos-
timulant effects on the DA transporter. In one study these
psychostimulants have no effect on locomotor activity or
DA release and uptake in DA transporter KO mice (Giros
et al, 1996). In contrast, other studies have found that DA
transporter KO mice display increased amphetamine-
induced conditioned place preference, and cocaine- and
amphetamine-stimulated increases in DA in the nucleus
accumbens (Carboni et al, 2001; Budygin et al, 2004).
Confounding these reports is Yamashita et al (2006), where
cocaine actually increased PPI in DA transporter KO mice,
presumably through norepinephrine (NE) transporter
blockade. Also, Tilley et al (2007) found that DA transporter
knockdown mice exhibit increased cocaine-stimulated
locomotor activity. Nevertheless, there is evidence that
amphetamine elevates extracellular DA by a transporter-
mediated release of non-vesicular, and possibly vesicular
DA, from dopaminergic terminals, whereas cocaine mainly
acts by blocking DA uptake (Ary and Komiskey, 1982;
Butcher et al, 1988; Hurd and Ungerstedt, 1989; Floor and
Meng, 1996; Sabol and Seiden, 1998). Additionally, amphe-
tamine induces immediate early gene c-fos expression
mainly in striosomes, whereas cocaine causes an immediate
c-fos expression in both the striosome and matrix
compartments of the dorsal striatum in the rat (Graybiel
et al, 1990). The striosomes and matrix are the major
neurotransmitter-specific compartments in the dorsal
striatum (Graybiel and Ragsdale, 1978; Graybiel et al,
1990) and have different limbic and sensorimotor affilia-
tions with cortex and subcortex (Donoghue and Herken-

DA DI, D2, and D3R subtypes in mouse cocaine-induced PPI
JM Doherty et al

@

ham, 1986; Ragsdale and Graybiel, 1990). Amphetamine and
cocaine also lead to different c-fos expression patterns in the
nucleus accumbens. Cocaine, but not amphetamine, elicited
more expression of c-fos in the shell than in the core of
nucleus accumbens (Graybiel et al, 1990). The nucleus
accumbens is a key modulator of PPI (for review Swerdlow
et al, 2001). The disruptive effects of amphetamine seem to
correlate in time with DA increase in the nucleus
accumbens in the rat (Zhang et al, 2000). Studies of mutant
mice challenged with amphetamine and cocaine (Graybiel
et al, 1990; Moratalla et al, 1996) indicate that the DI1R is
required to induce the expression of c-fos in striatal
neurons. Combined with our behavioral results, these
studies suggest that amphetamine and cocaine exert
differential effects in rodents.

Although previous studies indicate that the D4R subtype
does not influence PPI or the effect of amphetamine on PPI
(Ralph et al, 1999), a contribution of the D4R subtype in
cocaine-induced PPI deficits remains a possibility. The
present results, showing the necessary role of the DIR in
cocaine-induced PPI, and evidence from prior studies
(Ralph et al, 1999; Holmes et al, 2001; Ralph-Williams
et al, 2002, 2003; Ralph and Caine, 2005), indicate that the
D5 DA receptor subtype has little contribution to psychos-
timulant-induced PPI deficits. Nevertheless, we cannot rule
out a possible contribution of the D5R subtype to cocaine-
induced PPI deficits.

Cocaine had slight but nonsignificant effects on startle
reactivity in all experiments. Specifically, cocaine did not
affect ASR in WT, DI1R, D2R, or D3R mice, although DI1R
and D3R KO mice exhibited higher and lower startle than
their WT counterparts, respectively. The only interaction of
sex with cocaine treatment occurred in male D2R WT mice,
where cocaine decreased ASR compared to vehicle controls.
In general, some differences in ASR across experiments
were due to male mice in all experiments exhibiting higher
startle than female counterparts, regardless of genotype.
Also, female D2R KO mice exhibited reduced startle
compared to WT littermates, regardless of drug treatment.
Although each of these lines has been backcrossed 7 (for
DI1R and D3R mice) or 14 (for D2R mice) generations and
are considered to be congenic to C57Bl/6], there is the
possibility of genetic drift in each line. These differences in
startle magnitude between the lines of mice should not
impact the interpretability of the effects of cocaine on PPI.
First, each line was bred using heterozygous matings and
studies were conducted in WT and KO littermates. All
statistical comparisons were carried out within each line.
Second, while the startle values did differ between the WT
mice of each line, the percent PPI was very similar across
the lines, demonstrating the independence of PPI and startle
magnitude. Moreover, cocaine disrupted PPI in all three
lines of WT mice. Our results in mice corroborate the study
by Yamashita et al (2006) and extend it with behavioral data
suggesting that amphetamine and cocaine exert differential
effects in rodents.

Cocaine and amphetamine both increase available NE and
serotonin (5HT), although in distinct manners that may be
important for modulating PPI. Cocaine blocks, while
amphetamine reverses, the norepinephrine transporter
(NET) and serotonin transporter (SERT), and cocaine is
more potent at SERT than amphetamine (Rothman and
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Baumann, 2003). In rats, the o-1 NE antagonist prazosin
and the 5HT, antagonist ketanserin failed to reverse
cocaine-induced PPI deficits (van der Elst et al, 2006),
while the NE reuptake inhibitor desipramine, but not the
5HT reuptake inhibitor citalopram, normalized ampheta-
mine-induced PPI disruptions (Pouzet et al, 2005). In mice,
22A-KO mice were more sensitive to amphetamine-induced
PPI disruption (Lahdesmaki et al, 2004) and NET is
potentially involved in cocaine-induced PPI disruptions
(Yamashita et al, 2006). Future studies should include a DA
uptake inhibitor with little affinity for other neurotrans-
mitter pathways to help elucidate the mechanistic differ-
ences between amphetamine and cocaine in terms of effects
on PPL

When using genetically engineered mice, the potential
exists that some compensatory mechanisms may account
for the differences observed in mutants since the mice lack
the DA receptor throughout development. Developing
inducible DA receptor KO mice, where the receptor loss
can be turned on after critical developmental periods early
in life, may eliminate developmental caveats. The DA
receptor KO mice are used as model systems to gain a
molecular understanding of acute effects of psychostimu-
lants, such as cocaine and amphetamine. The mutant mice
help define the role the different DA receptor subtypes play
in the acute effects of psychostimulants, something
unobtainable with the poor subtype-specific agonists and
antagonists available today. Developing double KOs (eg
D3R combined with either D1R or D2R), if viable, could also
help explain the contributions of each DA receptor subtype
since multiple receptors seem to be involved and subtypes
may modulate each other. Genetically altered mice offer a
unique model to test the specificity and selectivity of
different DA drugs and may provide important new
concepts related to the clinical and social implications of
conditions displaying dysregulated DA systems, such as
Parkinson’s disease, drug addiction, and schizophrenia.

The results of the present study support differential roles
for the DA DIR, D2R, and D3R subtypes in modulating
cocaine-induced disruption of PPI in mice. Further
evidence is needed to explain fully the differences in rodent
responses to psychostimulant drugs depending upon
whether their DA receptors are manipulated pharmacolo-
gically or genetically. Deciphering the role that specific DA
receptors play in modulating behavioral effects will help
explain disorders involving DA, such as schizophrenia and
drug abuse.
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