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Methamphetamine (mAMPH) is an addictive drug that produces memory and recall impairments in humans. Animals subjected to a

binge mAMPH dosing regimen that damages brain dopamine and serotonin terminals show impairments in an object recognition (OR)

task. Earlier research demonstrated that preceding a single-day mAMPH binge regimen with several days of increasing mAMPH doses

greatly attenuates its neurotoxicity in rats. The escalating dose (ED) paradigm appears to mimic the human pattern of escalating drug

intake. The current aim was to test whether an ED plus binge mAMPH regimen produces OR impairments. In addition to its translational

value, this experiment helps address whether monoaminergic neurotoxicity accounts for OR impairments seen after mAMPH

administration. To further address this issue, a separate experiment investigated both OR impairments and monoamine transporter

integrity in groups of rats treated with a range of mAMPH doses during a single day. An ED mAMPH regimen attenuated the acute

hyperthermic response to the subsequent mAMPH binge and prevented the OR impairments and reductions in [125I]RTI-55 binding to

monoamine transporters in striatum, hippocampus (HC), and perirhinal cortex (pRh) that otherwise occur 1 week after the mAMPH

binge. Single-day mAMPH regimens (4� 1mg/kg to 4� 4mg/kg, s.c.) dose-dependently produced acute hyperthermia and, 1 week post-

mAMPH, produced dose-dependent impairments in OR and reductions in monoamine transporter binding. The OR impairments of

single-day mAMPH-treated rats correlated with monoaminergic transporter loss in ventral caudate-putamen, HC, and pRh. In aggregate,

these findings suggest a correspondence between mAMPH-induced monoaminergic injury and the resulting OR deficits.

Neuropsychopharmacology (2008) 33, 1453–1463; doi:10.1038/sj.npp.1301510; published online 18 July 2007

Keywords: amphetamines; DAT; SERT; novelty detection; neurotoxicity; object recognition

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

INTRODUCTION

Methamphetamine (mAMPH) is a widely abused synthetic
psychostimulant that produces a broad spectrum of
behavioral effects. The drug’s strong reinforcing qualities,
its long-lasting effects, as well as the ease with which it can
be manufactured has produced an epidemic of illicit drug
use. A growing literature suggests that mAMPH may result
in long-term cognitive deficits in humans. Clinically,
current and abstinent mAMPH users show impairments in
various tests of verbal and non-verbal memory, executive
function, attention, and motor performance (Volkow et al,
2001; Simon et al, 2002; Thompson et al, 2004; Gonzalez
et al, 2004).

For many years, animal models of mAMPH’s effects have
principally employed single-day, repeated high-dose
(‘binge’) mAMPH regimens. Animals previously exposed
to these dosing regimens show impairments in both motor

performance tasks (Walsh and Wagner, 1992) and an
appetitive maze sequential learning task (Chapman et al,
2001), and have mild spatial memory impairments (Friedman
et al, 1998; however, see Schröder et al, 2003). More
recently, several reports (Bisagno et al, 2002; Schröder et al,
2003; Belcher et al, 2005) have shown that rats exposed to
bingeing doses of mAMPH are impaired in a task of novelty
detection object recognition (OR).

However, several researchers have argued that the animal
model of single-day binge mAMPH administration fails to
capture an important feature of chronic stimulant abuse;
namely, the gradual escalation of mAMPH doses that is
typically seen as drug use progresses. From this perspective,
the inclusion of an escalating mAMPH component in
experimental studies more appropriately models the ramp-
ing up of mAMPH use in humans. Clearly, the degree of
mAMPH-induced CNS injury depends on the pattern of
dosing. Single-day binge doses of mAMPH, when suffi-
ciently high, can produce long-lasting neurotoxic damage to
the dopaminergic (Seiden et al, 1975; Ellison et al, 1978) and
serotonergic systems (Ricaurte et al, 1980; Axt and Molliver,
1991), as well as degeneration of cells in somatosensory
cortex (Commins and Seiden, 1986; O’Dell and Marshall,
2000). However, binge mAMPH-related increases in
behavioral stereotypy and body temperature, as well as
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subsequent reductions in dopamine content and dopamine
transporter (DAT) binding, are attenuated when the binge
dosing regimen is preceded by a multi-day escalating dose
(ED) regimen of mAMPH administration (Segal et al, 2003).
In addition to approximating the pattern of increasingly
higher mAMPH doses that human abusers report, this ED
regimen was used in the present study to test further the
relationship between mAMPH-induced OR impairments
and neurotoxicity.

The purpose of the present study was to evaluate whether
animals exposed to an ED plus binge regimen of mAMPH
(13 days of EDs of mAMPH followed by a single-day, binge
administration of mAMPH) would exhibit impairments in
the OR task. Additionally, the fact that escalating mAMPH
regimens attenuate binge mAMPH-induced neurotoxicity
allowed us to investigate the role of neurotoxicity in the
production of cognitive deficits. To further address this
question, a second experiment was conducted in which
animals were administered various mAMPH doses (which
were either neurotoxic or non-neurotoxic) during a single
day and then tested for OR. All tests of OR performance
were conducted 1 week after the final drug treatments. In
each experiment, animals were euthanized 1 week following
OR testing, and their brains were processed for [125I]RTI-55
binding autoradiography of dopaminergic and serotonergic
transporters to assess monoaminergic terminal integrity.

MATERIALS AND METHODS

Subjects

Adult male Sprague–Dawley rats (275–300 g) were obtained
from Charles River Laboratories (Hollister, CA) and indivi-
dually housed, with food and water ad libitum, under a
standard 12-h light/12-h dark cycle (lights on 0700–1900 h)
at a temperature of 221C. The protocol for this research
was approved by the Institutional Animal Care and Use
Committee of the University of California, Irvine. Acquisition,
maintenance, handling, procedures, and care of the animals
were in accord with the NIH Guide for the Care and Use of
Laboratory Animals (NIH Guide, Vol. 25, no. 28, 1996).

Drug Treatments

Rats were treated with ( + )mAMPH hydrochloride (Sigma,
St Louis, MO) in two separate experiments. All drug and
vehicle injections were administered at a volume of 1 ml/kg,
and doses are expressed as the free base.

In Experiment 1, animals were given one of four
treatments: group MA/MA (N¼ 14) received a 13-day
mAMPH ED regimen followed by a mAMPH binge on
day 14; group SA/MA (N¼ 12) received saline for 13 days
followed by a mAMPH binge; group mAMPH binge
(N¼ 14) received only mAMPH during the binge regimen;
and group SAL binge (N¼ 11) received only saline during
the binge regimen. The ED regimen consisted of three
injections per day of SAL or mAMPH in gradually
increasing doses for 13 days, and all injections during the
ED regimen were administered in the animals’ individual
home cages. mAMPH or SAL injections were administered
3 h apart, and the mAMPH dosages began at 0.1 mg/kg (s.c.)
and increased by 0.1 mg/kg with every injection, so that on

the 13th day, the animals received 3.9 mg/kg. On day 14,
animals in all four groups were placed into Plexiglas boxes
(40� 40� 38 cm high) in groups of six to eight animals per
treatment group and were given four subcutaneous injec-
tions of either 4 mg/kg mAMPH or saline at 2-h intervals
(binge regimen). These injections took place in a room
distinct from the animals’ holding room. To determine the
acute effects of mAMPH administration, and because
mAMPH-induced hyperthermia is strongly correlated to
mAMPH-induced neuronal damage (Bowyer et al, 1992,
1994), rectal temperatures were measured 1 h after each
injection. Animals whose core temperatures reached 411C
or higher, or who lost postural support, were separated
from the group and were cooled with ice water for 15 min.
Eight of the animals given 4� 4 mg/kg mAMPH (four each
in groups SA/MA and mAMPH binge) succumbed to
complications associated with hyperthermia, and are not
included in any of the analyses.

In Experiment 2, the mAMPH binge regimen was
administered as described in Experiment 1, using four
injections of 4 mg/kg (N¼ 27), 3 mg/kg (N¼ 24), 2 mg/kg
(N¼ 14), 1 mg/kg (N¼ 11), or saline (SAL; 1 ml/kg, N¼ 40)
at 2-h intervals. Three of the rats given the 4 mg/kg mAMPH
dose succumbed to complications associated with hy-
perthermia, and are not included in any of the analyses.
Injections were given in Plexiglas boxes identical to those
used for Experiment 1, and were treated in a room distinct
from the animals’ holding room.

Novel OR

One week after SAL or drug treatment, the animals were
exposed to a novelty preference task of OR (Ennaceur and
Delacour, 1988; Ennaceur and Aggleton, 1997; Mumby et al,
2002; Winters and Bussey, 2005). The OR task required that
the rats recall which of two small objects they had
previously been exposed to. The task took place in a large
circular Plexiglas open field (50.8 cm high, 44.45 cm in
diameter), the outside walls of which were covered with
contact paper. A 15 W lamp placed 30 cm above the
apparatus provided the only illumination in the room. Six
days after the last treatment with mAMPH or SAL, a
habituation session was begun. Animals were placed
individually into the arena and were allowed to freely
explore for 3 min. Twenty-four later, the OR task was
conducted by placing individual rats for 3 min into the field,
in which two identical objects (objects A1 and A2) were
positioned in two adjacent corners, 10 cm from the walls
(familiarization phase, FAM). In a short-term memory
(STM) test given 90 min after familiarization, the rats
explored the open field for 3 min in the presence of one
familiar (A) and one novel (B) object. Objects were made of
glass, plastic, and metal and were chosen after determining,
in preliminary experiments with other animals, that they
were equally preferred. Between each trial, both the open-
field arena and the objects were washed with 95% ethanol
solution. All sessions were videotaped, and an experimenter
blind to treatment condition analyzed the OR behavior.
Exploration was defined as sniffing or touching the object
with the nose; sitting on the object was not considered
exploration. Object placement was counterbalanced so that
half of the animals in each treatment group saw the novel
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object on the left side (relative to the animal’s starting
position) of the open-field arena, and the other half saw the
novel object on the right side of the arena. An exploration
quotient (EQ) was calculated for each animal as (TB)C
(TA + TB), where TA¼ time spent exploring the object A
and TB ¼ time spent exploring the object B (Ennaceur and
Delacour, 1988). EQ scores were calculated for the FAM
phase, with TB assignment dependent on the side of the
novel object during the STM test. An EQ score of 50%
indicates chance performance (ie, zero discrimination
between the two objects at either the FAM or STM phase).
Animals that did not explore the objects for a minimum of
10 s in either the FAM phase or the STM phase were
excluded from the analysis.

Quantification of 5-HT and DA Transporters

One week after completion of the last behavioral test, the
rats were killed, and their brains were removed and frozen
at �201C for use in autoradiography. Twenty micrometer-
thick coronal sections were cut in a cryostat at the levels of
the striatum and dorsal hippocampus (HC), and sections
were incubated with either 19 pM (in Experiment 1) or
24 pM (in Experiment 2) [125I]RTI-55 for autoradiographic
localization of DAT in the striatum and serotonin
transporter (SERT) in the HC and perirhinal cortex (pRh),
using the procedures of Boja et al (1992). DAT binding
in these limbic areas (HC and pRh) is quite low, and
constitutes a small percentage of total binding (Tohyama
and Takatsuji, 1998; Richtand et al, 1995; Donnan et al,
1989). Similarly, serotonin innervation constitutes only
about 20% of the dopaminergic input to the striatum
(Brownstein and Palkovits, 1984). For these reasons, only
DAT in striatum and SERT in HC and pRh were assessed.
For striatal sections, DAT binding was defined as the total
amount of [125I]RTI-55 binding in the presence of the SERT
inhibitor, fluoxetine (100 nM). For HC and pRh sections,
SERT binding was defined as the total amount of [125I]RTI-
55 binding. Slides containing tissue sections and standard
slides containing known amounts of radioactivity were
apposed to RayMax b autoradiography film (ICN Pharma-
ceuticals) for at least 48 h before development. Quantifica-
tion of [125I]RTI-55 binding to DAT and SERT in the
autoradiographs was carried out on an MCID image
analyzer (Imaging Research, St Catherines, Ontario). Image
densities were converted to [125I]RTI-55 binding levels
using a calibration curve based on readings taken from
images of the standard slides packed with each film.
Hippocampal and pRh SERT and striatal DAT levels were
determined by outlining these structures (based on Paxinos
and Watson, 1998) on their respective [125I]RTI-55 images.
The regions were quantified for the left and right sides, and
readings were averaged from at least three sections per
animal. The HC and pRh were chosen because of their
known involvement in tasks of learning and memory
including OR (see reviews by Squire and Zola-Morgan,
1991; Brown and Aggleton, 2001).

Statistical Analysis

Temperature data, OR EQs, and [125I]RTI-55 binding
densities were analyzed using analysis of variance (ANOVA).

Post hoc comparisons of EQs between FAM and STM
sessions within the same group were made with paired-
samples t-tests. In cases where more than one treatment
group was compared with the other groups, significant main
effects were explored post hoc with a Bonferroni correction.
Correlations between EQ scores during OR testing and
transporter-binding densities were investigated using Pearson
r. P values less than 0.05 were considered to indicate statistical
significance.

RESULTS

Experiment 1FED Plus Binge mAMPH Administration

Body temperature. Regardless of pretreatment, treatment
with mAMPH on day 14 significantly altered the animals’
core body temperatures (Figure 1a), with a significant
effect of group (repeated measures ANOVA, F(3,43) ¼ 12.51,
po0.001) and time (F(3,129) ¼ 7.39, po0.001). Bonferroni
post hoc analyses revealed that pretreatment with SAL did
not affect animals’ hyperthermic response to mAMPH on
the binge administration day (SA/MA vs mAMPH binge,
p40.05). However, pretreatment with mAMPH blunted
animals’ mAMPH-induced increase in core temperature,
such that average body temperatures of the MA/MA group
were significantly different from mAMPH binge (MA/MA vs
mAMPH binge; po0.05), and showed a trend towards a
difference from SA/MA-treated animals (MA/MA vs SA/MA;
p¼ 0.08).

Object recognition. To investigate the behavioral effects of
single-day mAMPH, animals were tested for OR 1 week after
mAMPH or SAL binge administration. An analysis of each
of the groups’ object exploration during the FAM phase of
the OR task revealed no differences in either the groups’
total exploration of the two identical objects (one-way
ANOVA, F(3,47) ¼ 2.36, p40.05; Table 1) or in their
preference for either of the two identical objects (Object
A1 vs Object A2 paired-samples t-test, p40.05 for all three
groups).

In the STM test given 90 min later, a novel object replaced
one of the familiar objects. A repeated measures ANOVA
revealed a significant main effect of test phase (FAM
vs STM; F(1,47) ¼ 41.50, po0.001), and a group by phase
interaction (F(3,47) ¼ 3.537, po0.05). Only SAL binge-treated
and MA/MA-treated animals showed significant memory
for the familiar object during the STM phase, as evidenced
by higher EQ scores during the STM than FAM phase (FAM
EQ vs STM EQ, paired samples t-tests, t¼ 3.43 MA/MA;
t¼ 5.79 SAL binge, p’so0.005) (Table 1).

DAT and SERT binding. To assess mAMPH-induced
damage to the dopaminergic and serotonergic terminals in
several brain regions, we used autoradiography to quantify
[125I]RTI-55 binding to DAT and SERT in the brains of
animals tested for OR 1 week after treatment. Specifically,
we assessed DAT binding in dorsal (dCPu) and ventral
caudate-putamen (vCPu) and nucleus accumbens (NAc),
and SERT binding in HC and pRh. A two-way ANOVA of
mean monoaminergic transporter binding levels revealed a
significant main effect of treatment group (5 (region)� 4
(group) repeated measures ANOVA, F(3,45)¼ 6.27, po0.005)
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(Figure 1b). Subsequent one-way ANOVAs for each region
revealed significant group differences for vCPu DAT and
HC and pRh SERT (F(3,47)¼ 7.39, po0.001; F(3,45) ¼ 3.35,
po0.05; and F(3,45)¼ 4.55, po0.01, respectively), but not for
dCPu or NAc DAT binding (p’s40.05). Bonferroni post hoc
tests revealed that the mAMPH binge regimen induced a
significant 40% depletion in ventral CPu DAT binding, and

a significant 20 and 26% depletion in HC and pRh SERT
binding, respectively. The SA/MA group had a loss of
monoamine transporter binding (38, 19, and 27% deple-
tions of [125I]RTI-55 binding to vCPu DAT, HC SERT, and
pRh SERT, respectively (Dunnett’s post hoc t-test, po0.01
for all three regions)) similar to that seen in the mAMPH
binge group. There were no significant differences between

Figure 1 (a) Core body temperatures (measured 1 h following each injection). Treatment with four injections of 4mg/kg mAMPH caused significant
increases in core body temperature, relative to SAL-injected animals, regardless of pretreatment. However, animals exposed to EDs of mAMPH for 13 days
before the mAMPH binge day (MA/MA group) showed an attenuated hyperthermic response relative to the animals only given the mAMPH binge
(mAMPH binge group). Data are expressed as mean7SEM. Mean group temperature (averaged across all four time points) of MA/MA group differs
significantly from SAL binge, *po0.01 and from mAMPH binge, apo0.05. Additionally, mean group temperature of group MA/MA showed a trend towards
a difference from group SA/MA, bp¼ 0.08 (Bonferroni post hoc analysis). (b) [125I]RTI-55 binding to dopaminergic transporters in dCPu and vCPu, and NAc,
and to serotonergic transporters in HC and perirhinal cortex (pRh Cx). One-way ANOVA revealed a significant difference between groups for vCPu DAT,
HC, and pRh Cx SERT (po0.05). Indicates significant difference from control (SAL binge), *po0.05 (Dunnett’s t-test).
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SA/MA and mAMPH binge-treated animals (Bonferroni
post hoc, p’s40.05 for all five regions). By contrast, the
MA/MA group had no significant decline in DAT or SERT
binding, relative to the SAL binge-treated group, for any of
the regions analyzed (p’s40.05). These data support the
observation (Segal et al, 2003) that an ED regimen of
mAMPH greatly blunts the neurotoxicity that would
otherwise be incurred following a high-dose bingeing
regimen of mAMPH. Further, the regional pattern of DAT
loss observed in the striatal complex by the mAMPH binge
and SA/MA groups (vCPu affected more than dCPu or NAc)
closely mimics the pattern of mAMPH-induced DAT and
DA reductions reported by Eisch et al (1992).

Pearson’s correlation revealed no significant relationship
between animals’ performance on the STM phase of the OR
task and [125I]RTI-55 binding to dCPu, vCPu, or NAc DAT
or to HC or pRh SERT (p40.05 for all correlations). Also
there were no significant correlations between EQ difference
scores (STM EQ�FAM EQ) and [125I]RTI-55 binding in any
region.

Experiment 2FSingle-Day mAMPH Administration

Body temperature. Animals’ core body temperatures were
measured 1 hour following each of the four mAMPH or SAL
injections (Figure 2). Animals given four injections of
mAMPH had significant, dose-dependent increases in body
temperatures, compared with SAL controls. Repeated
measures ANOVA revealed a significant main effect of dose
(F(4,84) ¼ 93.33, po0.01), a significant effect of time point
(F(1,84) ¼ 4.35, po0.05), and a significant interaction be-
tween dose and time (F(4,84) ¼ 7.23, po0.01). Bonferroni
post hoc analyses revealed that animals treated with
4� 3 mg/kg mAMPH did not differ in their average body
temperatures from animals treated with 4� 4 mg/kg
mAMPH, yet both groups differed from all other treatment
groups. Additionally, all other treatment groups (4� 2 mg/
kg, 4� 1 mg/kg, 4� SAL) were significantly different from
each other (p’s o0.01).

Object recognition. One-way ANOVA revealed that the
groups differed significantly in their overall exploration of
the two sample objects during the FAM phase of the OR task
(the sum of time spent investigating objects A1 and A2;
F(4,86) ¼ 5.18, po0.01). Post hoc analyses revealed that this
effect was entirely attributable to animals treated with
4� 1 mg/kg mAMPH, who spent a significantly greater

amount of time investigating the sample objects (mean7
SEM¼ 41.5672.95 s) compared with SAL-treated animals
(2671.93 s) (Dunnett’s t-test, po0.01). No other groups
differed significantly from SAL controls on this measure.
Additionally, animals in all five groups showed equivalent
times investigating the Object A1 and Object A2 during the
FAM phase (paired-samples t-tests, p’s40.05).

A repeated measures ANOVA revealed a significant main
effect of test phase (FAM EQ vs STM EQ, F(1,86)¼ 17.44,
po0.01), but no significant effects of dosage (F(4,86)¼ 1.27,
p¼ 0.29) nor a dose by phase interaction (F(4,86)¼ 1.36,
p¼ 0.26; Figure 3a). To determine the source of the
significant main effect of test phase observed in the
ANOVA, differences between the FAM and STM EQ scores
of the individual dosage groups were tested using paired
comparisons. SAL controls and animals given four injec-
tions of 1 mg/kg mAMPH showed a strong preference
towards investigating the novel object during the STM test,
indicated by an STM EQ score significantly higher than the
FAM EQ score (t-test, t¼ 5.823, po0.001 and t¼ 2.614,
po0.05 for SAL controls and 4� 1 animals, respectively).
However, animals given four injections of 2, 3, or 4 mg/kg
mAMPH showed no such STM EQ vs FAM EQ difference,
suggesting that prior treatment with these doses of mAMPH
prevented memory retention for the familiar object.

DAT and SERT binding. A 5 (region)� 5 (treatment
group) repeated measures ANOVA revealed a significant
main effect of dosage group (F(4,86) ¼ 10.18, po0.001), brain
region (F(4,344) ¼ 199.40, po0.001), and a significant inter-
action between the two variables (F(16,344) ¼ 5.65, po0.001)
(Figure 3b). Subsequent one-way ANOVAs revealed sig-
nificant main effects of group for all five regions analyzed
(F(4,90) ¼ 2.86, 12.47, 2.54, 9.89, and 10.98, p’so0.05 for
dCPu, vCPu, NAc DAT, and HC and pRh SERT, respec-
tively). Relative to SAL controls, the 4� 4 mg/kg mAMPH
regimen induced significant loss of DAT binding in dCPu
(17%) and vCPu (40%) and of SERT binding in HC (34%)
and pRh (33%) (Figure 3b) (Dunnett’s t-tests, po0.005 for
all four regions). Animals treated with a 4� 3 regimen of
mAMPH had a significant (25%) depletion in vCPu DAT
(po0.001), and a significant (15%) depletion in pRh SERT
(po0.05), relative to SAL controls. Additionally, animals
treated with four injections of 2 mg/kg mAMPH had
significant depletions in vCPu DAT (20%) (po0.05). No
significant depletions occurred in animals treated with
4� 1 mg/kg mAMPH. These results suggest that increasing
doses of mAMPH deplete monoamine transporter content
in a graded, regionally dependent manner.

Pearson’s correlation was used to investigate the relation-
ship between animals’ performance on the STM phase of the
OR task and [125I]RTI-55 binding to brain monoaminergic
transporters after single-day regimens of SAL or differing
mAMPH doses (Figure 4). Significant positive correlations
were found for STM EQ score and monoaminergic
transporter binding in vCPu DAT (r¼ 0.294, p¼ 0.005),
HC SERT (r¼ 0.328, p¼ 0.002), and pRh SERT (r¼ 0.308,
p¼ 0.003), but not for NAc or dCPu DAT (p’s40.05).
Similarly, positive correlations were found between EQ
difference scores (STM EQ�FAM EQ) and monoaminergic
transporter binding in vCPu DAT (r¼ 0.228, p¼ 0.029), HC

Table 1 Object Recognition Behavior after Chronic mAMPH
Treatments

Group FAM EQ STM EQ DIFF

SAL binge (N¼ 11) 0.4670.03 0.7370.05a 0.2870.05

mAMPH binge (N¼ 14) 0.5670.04 0.6370.05 0.0770.04

SA/MA (N¼ 12) 0.5070.03 0.6070.04 0.1070.05

MA/MA (N¼ 14) 0.5170.03 0.6670.04a 0.1570.04

FAM, familiarization phase; DIFF, difference score (STM EQ�FAM EQ);
EQ, exploration quotient ; STM, short-term memory phase.
Data expressed as EQ (see Materials and Methods) group mean (7SEM).
aSignificant difference from FAM EQ, po0.01.
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SERT (r¼ 0.235, p¼ 0.025), and pRh SERT (r¼ 0.217,
p¼ 0.039), but not for NAc or dCPu DAT (p’s40.05).
These results suggest a relationship between mAMPH-
induced depletions of DAT and SERT binding in particular
striatal and cortical territories and consequent recognition
memory impairments, as assessed by the OR task.

DISCUSSION

A growing body of evidence indicates that protracted use of
mAMPH causes long-term impairments in cognitive func-
tion in humans. Clinically, mAMPH users have impairments
in motor skills (Volkow et al, 2001; Wang et al, 2004),
maintaining attention (Nordahl et al, 2003; Salo et al, 2002),
decision-making skills (Rogers et al, 1999; Paulus et al,
2002), and set-shifting abilities (Simon et al, 2002; Ornstein
et al, 2000). One particularly prominent feature noted in
several studies with human mAMPH users is that of these
users’ poor recall and recognition memory (Ornstein et al,
2000; Volkow et al, 2001; Sim et al, 2002; Simon et al, 2002;
Gonzalez et al, 2004).

Typically, mAMPH users engage in patterns of bingeing
that can be mimicked by dosing regimens in experimental
animals. The potential for these binge patterns of admin-
istration to induce neurotoxicity to monoaminergic term-
inals was first described by several researchers in the mid to
late 1970s (Koda and Gibb, 1973; Seiden et al, 1975; Ellison
et al, 1978; Gibb and Kogan, 1979; Hotchkiss et al, 1979).
The neurotoxic dosing regimen usually employed by

researchers involves giving animals several moderate to
high doses of mAMPH spaced across a single day. These
administrations produce long-term damage to forebrain
monoaminergic terminals (Koda and Gibb, 1973; Hotchkiss
and Gibb, 1980; Schmidt et al, 1985; Wagner et al, 1979;
Ricaurte et al, 1982; Axt and Molliver, 1991) and degenera-
tion of neuronal cell bodies in parietal cortex (Commins
and Seiden, 1986; Eisch et al, 1996; O’Dell and Marshall,
2000).

Additionally, patterns of mAMPH administration that
induce neurotoxicity produce deficits in at least two
domains of learning and memory: motor learning (Chap-
man et al, 2001), and novelty preference OR (Bisagno et al,
2002; Schröder et al, 2003; Belcher et al, 2005), findings
which may provide analogues to the motor and recognition
memory deficits seen in human mAMPH users. However,
some researchers have questioned the applicability of such
single-day binge paradigms to human self-administration
patterns, arguing that a more appropriate model is to
expose drug-naı̈ve animals to multiple days of lower EDs
of mAMPH before the binge doses. Importantly, these
EDs exert a neuroprotective effect, as the depletions of
dopaminergic markers induced by a mAMPH binge are
attenuated when it is preceded by several days of EDs of
mAMPH (Segal et al, 2003; O’Neil et al, 2006).

Animals exposed to a mAMPH binge regimen (groups
SA/MA and mAMPH binge) showed deficits in OR during
the STM phase of the OR task. However, when the binge
regimen was preceded by 13 days of EDs of mAMPH (group
MA/MA), no OR impairment was observed.

Figure 2 Core body temperatures (measured one hour following each injection). Relative to saline-treated animals, a single-day regimen of mAMPH
caused dose-dependent increases in core body temperature, measured 1 h after each of the four injections. Data expressed as mean7SEM. Mean group
temperature *differs from all other groups, po0.01, adiffers from all groups except 4� 4mg/kg, po0.01, bdiffers from all groups except 4� 3mg/kg,
po0.01 (Bonferroni post hoc analysis).
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The ED plus binge regimen of mAMPH also resulted in
monoamine transporter binding levels that differed from
those produced by single-day binge mAMPH. Whereas both
SA/MA and mAMPH binge groups from the first experi-
ment experienced significant reductions in striatal DAT and
hippocampal and perirhinal SERT binding levels compared
with SA/SA controls, the levels of DAT and SERT were not
significantly different between groups MA/MA and SAL
controls. In addition to attenuating the binge mAMPH-

induced behavioral impairments and monoamine transpor-
ter depletions, the ED schedule of mAMPH attenuated the
acute hyperthermic response to binge mAMPH doses. These
findings are consistent with earlier reports that treatment
with EDs of mAMPH before a binge administration
mitigates the hyperthermic response and neurochemical
depletions that ensue from mAMPH binge regimens (Segal
et al, 2003; O’Neil et al, 2006). These data suggest that EDs
of mAMPH help protect against the monoamine transporter

Figure 3 (a) EQs during familiarization and STM phases of animals given four injections of mAMPH or saline in a single day. Four injections of 2, 3, or 4mg/
kg mAMPH impair STM performance in the novel OR memory task 1 week after drug treatment. Data are expressed as mean7SEM. Significant within-
group difference between the two phases (Student’s paired-samples t-test) are indicated by *po0.05, **po0.01. Dashed line represents chance
performance. (b) [125I]RTI-55 binding to dopaminergic transporters in dCPu and vCPu and NAc, and to serotonergic transporters in HC and pRh Cx. Values
represent mean7SEM binding values, expressed as mCi per gram of tissue. Dunnett’s t-tests, differs significantly from saline-treated group, *po0.01,
**po0.05.
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damage that causes cognitive impairments. One caveat to
this conclusion is that, in Experiment 1, the correlations
between OR impairments and the reductions in monoamine
transporter binding were not statistically significant, a
result that may have arisen because the animals of that
experiment tended to cluster into two categories, depleted
or non-depleted.

The second experiment addressed more fully the issue of
whether the mAMPH-induced impairments in OR memory
co-varied with the extent of the monoamine transporter
loss. In that experiment, we attempted to vary the degree of
neurotoxicity arising from a single-day mAMPH binge
regimen by using a range of mAMPH doses. In this way, we
were able to achieve a wide range of effects on DA and 5-HT

Figure 4 Relationship between transporter-binding density and OR performance for animals given single-day regimens of either mAMPH
or SAL (Experiment 2). Pearson r revealed significant correlations between EQs during the STM phase and [125I]RTI-55 binding in vCPu (a), HC (b),
and pRh (c). Additionally, RTI binding significantly correlated with OR Difference scores (STM EQ�Familiarization phase EQ) for these same brain
regions (d–f).
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transporters. Animals given single-day mAMPH bingeing
doses that caused neurotoxicity (4� 4, 4� 3 and 4� 2 mg/
kg) showed no evidence of STM for the familiar object when
tested for OR, while animals given saline or the non-
neurotoxic regimen of mAMPH (4� 1 mg/kg) evidenced
memory for the familiar object. Animals given the highest
doses of mAMPH (4� 4 mg/kg) appear to have the most
severe impairments in OR (Figure 3a). As animals in the
4� 1 mg/kg mAMPH group also showed a significantly
greater total amount of exploration of the sample objects
during the familiarization phase, it is possible that their
intact retention during the STM phase was attributable to
their enhanced initial exploration of the objects.

Correlational analyses were conducted to further explore
the relationship between OR impairments and monoami-
nergic transporter loss in animals given single-day dosing
regimens. Significant positive correlations between OR
scores at the STM test (or STM�FAM difference scores)
and mean [125I]RTI-55 binding to monoaminergic trans-
porters were observed for animals given single-day dosing
regimens (Figure 4). These findings support a possible
contribution of monoamine terminal injury to the mAMPH-
induced decline in recognition memory. These results are
consistent with experimental literature indicating that both
the HC (Clark et al, 2000; Broadbent et al, 2004) and pRh
(Meunier et al, 1993; Turchi et al, 2005; Winters and Bussey,
2005; Warburton et al, 2005) contribute to performance on
recognition memory tasks. However, closer inspection of
the results from the single-day experiment does not support
a simple relationship between OR impairments and reduc-
tions in SERT binding in the regions analyzed. For example,
animals in the 4� 2, 4� 3, and 4� 4 mg/kg mAMPH groups
showed poor performance on OR, whereas only animals
treated with a 4� 4 mg/kg mAMPH dosing regimen showed
reliable serotonergic depletions. In comparison, the present
finding that the single-day mAMPH groups showing
reductions in vCPu DAT did correspond to those displaying
OR impairments accords with human imaging research
pointing to correlations between striatal dopaminergic
processes and the cognitive impairments of mAMPH users.
Volkow et al (2001) found that performance on verbal
memory tasks in detoxified human mAMPH abusers
correlates with the extent of striatal DAT availability.
Additionally, these results agree with findings from He
et al (2006) that demonstrate a positive correlation between
striatal dopaminergic integrity and OR performance in rats
previously exposed to neurotoxic regimens of mAMPH.
Establishing a causal relationship between any single aspect
of the neurotoxicity and the OR impairments, however,
remains challenging.

Much prior research indicates that a binge mAMPH
regimen exposes both monoamine and select cortical
neuron populations to a combination of intra- and
extracellular factors (eg, Lavoie and Hastings, 1999; Mark
et al, 2004) that promote their injury. A period of escalating
mAMPH dosing appears to attenuate both the acute effects
(hyperthermia) and the enduring effects (recognition
memory impairments, monoamine transporter loss) exerted
by later binge mAMPH administration. O’Neil et al (2006)
analyzed the basis for the influences of an escalating
mAMPH dosing regimen on the hyperthermia and DA
efflux induced by mAMPH binge, demonstrating that the

ED had no effect on concentrations of mAMPH or AMPH in
brain or plasma during the binge. Several decades of
research have shown that environmental context and past
drug history interact to modulate the effects of ampheta-
mines (see Badiani and Robinson (2004) for a comprehen-
sive review). Arguably, the neuroprotective effect of the
escalating mAMPH regimen could be mediated by con-
textual cues serving to produce tolerance to the neurotoxic
effects of the binge mAMPH. However, the fact that the ED
regimen and the subsequent binge regimen were each
administered in separate chambers and rooms makes this
argument unlikely. While the ED regimen appears to induce
a general pharmacodynamic tolerance to subsequent binge
mAMPH effects (O’Neil et al, 2006), including its neurotoxic
and cognitive consequences, the dependence of the
recognition memory impairments on the monoamine
transporter loss remains uncertain.

Although the principal findings of these experiments
point in the direction of a correspondence between the
monoamine injury and OR impairments, other findings
suggest dissociations. First, administration of d-ampheta-
mine or p-chloroamphetamine, which produce selective
reductions in DAT or SERT, respectively, did not result in
OR impairments, suggesting that injury to neither mono-
amine alone suffices to explain mAMPH’s effects on this
cognitive task (Belcher et al, 2005). Second, and more
telling, mAMPH or d-AMPH, when administered in non-
neurotoxic sensitizing regimens, can produce impairments
in OR (Belcher et al, 2006; Bisagno et al, 2003). These latter
findings raise the possibility that factors other than neural
injury can cause OR memory deficits in mAMPH-treated
animals. Specifically, binge dosing regimens may limit later
memory abilities because of the injury they cause (Schröder
et al, 2003; Belcher et al, 2005), whereas a sensitizing
mAMPH dose regimen may produce subsequent impair-
ments in cognitive function by interfering with neural
plasticity mechanisms (Kolb et al, 2003) that contribute to
the learning and retention of new information (Briand et al,
2005; Belcher et al, 2006). However, even neurotoxic
mAMPH regimens may impair cognitive function, at least
in part, by inducing sensitization (Itzhak et al, 2002). While
the cellular mechanisms underlying these effects of mAMPH
are presently unknown, other research has implicated both
hippocampal brain-dervied neurotrophic factor (Heldt et al,
2007) and phosphorylated extracellular signal-regulated
kinase (pERK; Kelly et al, 2003) in OR memory. Thus, a
possible downregulation of the tyrosine kinase-ERK signal-
ing pathway in mAMPH-treated animals warrants consi-
deration.

In summary, we have demonstrated that memory loss due
to administration of single-day neurotoxic binge mAMPH
can be prevented with prior exposure to several days of
neuroprotective EDs of mAMPH. Additionally, results from
single-day treatment with various mAMPH doses suggest
that a threshold of damage may be necessary in order for
the cognitive deficits to appear. Taken together, these two
pieces of information suggest that monoamine neurotoxi-
city accounts for the observed cognitive impairments.
However, this interpretation needs to be tempered by two
findings; (i) amphetamines (other than mAMPH) that
injure either DA or 5-HT systems do not produce cognitive
deficits (Belcher et al, 2005) and (ii) non-neurotoxic
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mAMPH administration can produce cognitive deficits
(Belcher et al, 2006). Further studies will be necessary in
order to fully elucidate the processes underlying the
mAMPH-induced cognitive impairments.
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