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Imaging the competition between D2/3 radioligands and endogenous dopamine is so far the only way to measure dopamine release in

the living human brain. The dopamine D2 receptor exists in a high (D2
high) and a low-affinity state for dopamine. Under physiological

conditions, dopamine is expected to bind to D2
high only. [11C]-( + )-4-propyl-9-hydroxynaphthoxazine (( + )-PHNO) is the first D2/3

agonist radioligand for positron emission tomography (PET) imaging in humans. Since [11C]-( + )-PHNO is expected to bind

preferentially to D2
high, it should be particularly vulnerable to competition with endogenous dopamine. Nine healthy subjects participated

in two PET scans, one after administration of d-amphetamine and one after placebo. [11C]-( + )-PHNO PET test re-test variability was

determined in 11 healthy subjects. Binding potentials (BPs) were calculated for caudate, putamen, ventral striatum, and globus pallidus.

d-Amphetamine led to a significant decrease of [11C]-( + )-PHNO BPs in caudate (�13.2%), putamen (�20.8%), and ventral striatum

(�24.9%), but not in globus pallidus (�6.5%). d-Amphetamine-induced displacement correlated with serum d-amphetamine levels in all

regions but caudate. This is the first report on competition between endogenous dopamine and a D2/3 agonist radioligand in humans.

[11C]-( + )-PHNO PET might be a superior measure for release of endogenous dopamine than PET employing conventional D2/3

antagonist radioligands.

Neuropsychopharmacology (2008) 33, 279–289; doi:10.1038/sj.npp.1301400; published online 4 April 2007

Keywords: dopamine; high affinity; agonist; displacement; competition; amphetamine

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

INTRODUCTION

Measuring changes in radioligand binding caused by
fluctuations in synaptic dopamine is at present the only
way to draw inference on changes in dopamine concentra-
tions in the living human brain. Reductions in radioligand
binding to dopamine D2/3 receptors measured with positron
emission tomography (PET) or single photon emission
computer tomography (SPECT) have been shown after
several behavioral (Koepp et al, 1998; de la Fuente-
Fernandez et al, 2002; Pruessner et al, 2004; Zald
et al, 2004; Volkow et al, 2006) and pharmacological
manipulations (Farde et al, 1992; Volkow et al, 1994;

Tedroff et al, 1996; de la Fuente-Fernandez et al, 2004),
which raise endogenous dopamine levels. In particular, the
well-replicated finding of greater reductions in [11C]-
raclopride and [123I]IBZM binding after d-amphetamine
administration in patients with schizophrenia when com-
pared to healthy controls (Laruelle et al, 1996, 1999; Breier
et al, 1997; Abi-Dargham et al, 1998) has generated
considerable interest in this research strategy. A critical
shortcoming of these studies is the ceiling-effect found with
conventional antagonist-radiotracers (Laruelle, 2000), and
although competitive inhibition of radioligand binding at
the D2/3 receptor by dopamine is believed to be one of the
main mechanisms underlying reductions in radioligand-
binding, the exact nature of the process is still not fully
elucidated (for review see Ginovart, 2005).

It is well established in vitro that D2 receptors exist in two
interconvertible affinity states for their natural agonist
dopamine, the high-affinity state (D2

high; Kd for dopamineReceived 20 October 2006; revised and accepted 15 February 2007
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1.570.2 nM) and the low-affinity state (D2
low; Kd for

dopamine in the micromolar range; Sibley et al, 1982).
Since D2

high mediates signal transduction at the postsynaptic
neuron, the high-affinity state is believed to be the
functionally important one (Zahniser and Molinoff, 1978;
George et al, 1985; Leff, 1995). As a result of the large
difference in Kd values between D2

high and D2
low, under

physiological conditions, dopamine is expected to bind to
D2

high only. So far, all D2/3 radioligands used in human PET
or SPECT studies are radio-labelled antagonists, which do
not differentiate between D2

high and D2
low. Several research

groups have recently reported on development and experi-
mental use of newly developed D2/3 agonist radioligands
(Zijlstra et al, 1993a, b; Shi et al, 1999, 2004; Hwang et al,
2000; Mukherjee et al, 2000, 2004; Finnema et al, 2005;
Narendran et al, 2004). Similar to dopamine, D2/3 agonist
radioligands are expected to bind mainly to D2

high. As a
consequence, they should be particularly sensitive to
competition with endogenous dopamine. This has recently
been confirmed in experiments in pigs (Cumming et al,
2003), rodents (Cumming et al, 2002), non-human primates
(Narendran et al, 2004; Seneca et al, 2006), and cats
(Ginovart et al, 2006a).

( + )-4-Propyl-9-hydroxynaphthoxazine, ( + )-(PHNO), is
a full agonist at D2/3 receptors (Brown et al, 1997). Labelled
with carbon-11 (Wilson et al, 2005), it is a PET ligand with
excellent signal-to noise ratio and favorable kinetics for PET
imaging in humans (Ginovart et al, 2006b; Willeit et al,
2006). As [11C]-( + )-PHNO is expected to bind to D2

high

only, in theory, all binding sites should be vulnerable to
competition with endogenous dopamine, and its binding
should be reduced to a considerably larger extent than
binding of an antagonist-radioligand by pretreatment with
d-amphetamine, a potent releaser of central nervous
dopamine. In a PET study performed in cats, Ginovart
et al (2006a) have shown not only that [11C]-( + )-PHNO is
more vulnerable towards d-amphetamine effects than the
D2/3 antagonist radioligand [11C]raclopride, but also that
[11C]-( + )-PHNO binding is reduced to an even larger
extent than binding of the D2 agonist ligand [11C]NPA.

In this study, we aimed to investigate the effects of
endogenous dopamine on striatal [11C]-( + )-PHNO binding
in healthy human subjects undergoing two [11C]-( + )-
PHNO PET scans, one at placebo conditions and another
one after pretreatment with d-amphetamine. Test–retest
variability of [11C]-( + )-PHNO PET was determined in an
independent study sample.

MATERIALS AND METHODS

Study Protocol

This study consisted of two parts. Part one was designed to
determine test–retest reliability of [11C]-( + )-PHNO PET
imaging, part two investigated the effects of d-amphetamine
on [11C]-( + )-PHNO binding. For the test-retest protocol,
subjects underwent two [11C]-( + )-PHNO PET scans at
drug-naive conditions at least 1 week apart from each other.
For the d-amphetamine protocol, subjects underwent one
[11C]-( + )-PHNO PET scan 2 h after oral intake of d-
amphetamine, and another [11C]-( + )-PHNO PET scan after
oral intake of a placebo. Conditions were randomly

counterbalanced, scans took place at least 1 week apart
from each other.

Study Subjects and Safety Procedures

This study has been approved by the local Ethics Committee
and the Canadian Ministry of Health, Therapeutic Products
Research Department. Twenty-three healthy volunteers
(nine females, 14 males; mean age: 3379 years, range:
18–49 years) were recruited by advertisements or word of
mouth. Written informed consent was obtained after full
explanation of study procedures and risks. Routine blood
and urine tests, an electrocardiogram (ECG) and a physical
exam were performed before inclusion. Psychiatric dis-
orders were assessed using the MINI-Plus structured
interview (Sheehan et al, 1998). Subjects with serious or
unstable medical or neurological conditions, axis-one
psychiatric diagnoses, substance abuse other than caffeine
or nicotine within 6 months before baseline visit were not
included into the study. On a day of a PET examination,
smokers (n¼ 5) were asked to consume no more than their
usual amount of cigarettes, and all participants were asked
to abstain from alcohol intake 24 h before PET scans, and
from caffeine-containing beverages 12 h before scans. A
standardized light breakfast was served before d-ampheta-
mine/placebo intake.

Standard urine tests for psychotropic substances were
performed at inclusion and before PET scans. Pregnancy was
excluded using serum HCG analysis at inclusion and standard
urine pregnancy tests before each scan. Blood pressure
measurements and continuous ECG monitoring were per-
formed during all scans. Participants had a physical exam and
standard ECGs immediately after scans. To document safety
of [11C]-( + )-PHNO PET procedures, the first 12 subjects
underwent an additional physical exam, ECG, routine blood
and urine analysis the day after PET scans.

Eleven subjects (one female) completed the test–retest
protocol, nine subjects (five females) the d-amphetamine
protocol. Three subjects (all females) dropped out during or
after the first [11C]-( + )-PHNO PET scan (two because of
nausea, one subject had moved away).

d-Amphetamine Administration

Two hours before radiotracer injection, participants were
administered either two or three capsules containing d-
amphetamine (Dexedrines tablets, Glaxo Smith Kline,
Mississauga, ON) or an equal number of identical capsules
containing inactive lactose-powder. Participants and re-
search personnel were blind to the content of the capsules.
According to body weight, 25, 30, or 35 mg d-amphetamine
were administered, resulting in a dose of 0.38–0.45 mg/kg
body weight (mean7SD dose: 27.873.02 mg; mean7SD
dose per kg body weight: 0.4270.02 mg). Five millilitres of
blood were drawn immediately before PET scans, centri-
fuged, and stored at �801C for determination of serum
d-amphetamine levels.

Subjective drug effects were measured using the Drug
Effects Questionnaire (DEQ; Justice and de Wit, 2000) and
stimulant-subscales of the Subjective States Questionnaire
(SSQ; White et al, 2002). Both scales are visual analog-scales
previously shown to be sensitive to d-amphetamine effects
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(Justice and de Wit, 2000; White et al, 2002). Scales were
administered before d-amphetamine/placebo intake and 60
and 230 min thereafter. Heart rate and blood pressure were
measured at 15, 30, 60, 90, and 180 min after d-amphetamine
administration, after tracer injection, and after PET scans.

[11C]-( + )-PHNO Synthesis

Radiosynthesis of [11C]-( + )-PHNO has been described in
detail elsewhere (Wilson et al, 2005). Briefly, [11C]propionyl
chloride was reacted with 9-hydroxynaphthoxazine to
generate a [11C]amide, which was subsequently reduced
by lithium aluminium hydride. Purification by HPLC and
formulation gave radiochemically pure [11C]-( + )-PHNO as
a sterile, pyrogen-free solution suitable for human studies.

Image Acquisition

All PET images were acquired on a CPS-HRRT high-
resolution neuro-PET camera system (Siemens Medical
Imaging, Knoxville, TN) with an in-plane resolution of
approximately 2.8 mm full-width at half-maximum
(FWHM). Participants were scanned in supine position
using a custom-made thermoplastic facemask together with
a head-fixation system (Tru-Scan Imaging, Annapolis).
Transmission scans were acquired before emission scans
using a single photon point source, 137Cs (T¼ 30.2 years,
Eg¼ 662 keV) and used for attenuation correction. A saline
solution of 355.2744 MBq [11C]-( + )-PHNO with a specific
activity at time of injection of 42.65713.2 GBq/mmol was
injected as a bolus into an intravenous line placed in an
antecubital vein. The line was flushed with 10 ml saline
immediately after tracer injection and subsequently re-
moved. Emission data were acquired in list mode over
90 min, raw data were reconstructed by filtered-back
projection to yield dynamic images with 15 1-min frames
and 15 5-min frames. Proton-density (PD) magnetic
resonance images (MRIs) were obtained on a General
Electric Medical System Signa 1.5T MRI scanner (General
Electric Medical Systems, Milwaukee, WI).

Image Analysis

All PET images were analyzed using the in-house automated
image analysis software ROMI. Exact procedures used in
ROMI are described elsewhere (Rusjan et al, 2006a). In
brief, a PD-MRI template in Montreal Neurologic Institute/
International Consortium for Brain Mapping (MNI/ICBM)
standard brain space was co-registered to PD-MRI images
using nonlinear iterative co-registration algorithms imple-
mented in SPM2 (http://www.fil.ion.ucl.ac.uk/spm/). Trans-
formation matrices were then applied to a standardized
template in MNI/ICBM space containing predefined regions
of interest (ROIs) for caudate (CAU), putamen (PUT),
ventral striatum (VST), globus pallidus (GP), and cortical
cerebellum (CER). Definition of the VST in the template
followed the method of Mawlawi et al (2001). After spatial
co-registration to PD-MRIs, the template was refined using
gray matter probability-maps obtained from MRIs using
SPM2. Since GP is imaged with a tone halfway between gray
and white matter structures, a special algorithm using a
predefined volume for GP (Spinks et al, 2005) was applied

to refine the GP-ROI (Rusjan et al, 2006b). PD-MRIs were
co-registered to summed PET images, the spatial transfor-
mation matrix was then applied to the refined ROIs. Data
from both hemispheres were pooled to obtain average
radioactivity concentrations in the volumes of interest.
Regional radioactivity was determined for each frame,
corrected for decay, and plotted vs time to obtain time–
activity curves (TACs). The simplified reference tissue
model (SRTM; Lammertsma et al, 1996) was applied to
derive binding potentials (BPs) for each region of interest
using PMOD software (Version 2.6.1; PMOD Technologies
Ltd, Zurich, Switzerland). Cortical cerebellum served as
reference region since it is virtually devoid of dopamine D2

and D3 receptors in humans (Camps et al, 1989; Hall et al,
1996; Levant, 1998). The use of the SRTM with a cerebellar
input function has recently been validated using kinetic
modelling and shown to provide adequate quantification of
D2/3 receptors with [11C]-( + )-PHNO in humans (Ginovart
et al, 2006b).

To validate the automated image analysis software for
[11C]-( + )-PHNO, 12 PET scans of six participants were
analyzed using ROMI software and in a conventional
manual way. For manual analysis, MRI scans were co-
registered to PET scans using Analyze 5.0 software
(Biomedical Imaging Resource, Mayo Clinic, Rochester,
MN). Regions of Interest for CAU, PUT, VST, GP, and CER
were drawn on PD-MRI images and subsequently trans-
ferred onto PET images. Typically, five axial PET slices were
used for CER (around the outermost border of cerebellar
cortex, sparing midline structures), 7–8 axial slices for CAU
and PUT, and 6–7 axial slices for GP. Delineation of the VST
followed the method described by Mawlawi et al (2001).

For an analysis of d-amphetamine effects without a priori
anatomical hypothesis, parametric maps of d-amphetamine
and placebo scans were constructed using PMOD software
and subsequently analyzed using SPM2. For each scan, the
SRTM was applied voxelwise using CER as reference region
to create parametric maps with a voxel size of 2� 2� 2 mm
(x–y–z). A template was constructed using a mean image of
naı̈ve BP maps. Individual parametric maps were spatially
normalized to the template by Nearest Neighbor interpola-
tion algorithm. Effects of d-amphetamine administration
were assessed voxel-wise using paired t-test procedures
implemented in SPM2.

Statistical Analysis

Differences in the magnitude of change between placebo
and d-amphetamine and between scan one and scan two in
d-amphetamine/placebo and test/re-test parts of the study
were analyzed using repeated measures analysis of variance
(RM-ANOVA). Binding potentials in the four ROIs were the
dependent variables, the repetition factor was termed
‘condition’ (ie, d-amphetamine vs placebo and scan one vs
scan two). The respective study part (d-amphetamine/
placebo vs test/retest) was the between-subject variable. The
significance of the ‘study part*condition’ interactions are
reported. Paired-samples t-tests (two-tailed) were used for
post hoc comparisons. Correlations between d-ampheta-
mine plasma levels and d-amphetamine-induced reductions
in [11C]-( + )-PHNO BPs, and correlations between results
obtained with ROMI software and manual image analysis
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were analyzed using Pearson Product Moment correlations.
Paired-samples t-tests (two-tailed) were used to analyze
subjective and physiological effects of d-amphetamine.

Test-retest variability was calculated as [(BPscan one�
BPscan two)/BPscan one� 100], d-amphetamine-induced re-
ductions in [11C]-( + )-PHNO BPs were calculated as the
percentage reduction in BP obtained after drug treatment
when compared to placebo [(BPplacebo�BPd-amphetamine)/
BPplacebo � 100].

All tests were performed using the statistical software
package SPSS, Release 12.0.1 (SPSS Inc., Chicago, IL).

RESULTS

Physiological Effects/Safety of [11C]-( + )-PHNO

Injection of [11C]-( + )-PHNO did not lead to any significant
changes in blood pressure, heart rate, or ECG at any time in
the study. Similarly, there were no relevant findings in
physical or neurological exams or in routine blood and
urine analyses during the study. However, as described
previously (Willeit et al, 2006), participants described mild
and self-limited (duration 2–3 min) side effects (slight
nausea or abdominal sensations of warmth) in one-third
of the scans (14 of 43 scans). One subject wished to
interrupt the scan; another one had a single episode of
vomiting and did not reassume scanning thereafter because
of data loss. Full data sets were acquired in 20 subjects.

Physiological and Subjective Effects of d-Amphetamine
Administration

In good agreement with previous data [http://us.gsk.
com/products/assets/us_dexedrine.pdf], administration of
d-amphetamine resulted in serum levels of 53.2724.4 ng/ml
(range: 11.6–73.8 ng/ml) two hours post d-amphetamine
intake (p.i.), that is, immediately before the PET scan. There
was a significant increase in systolic (baseline: 115712 mm
Hg; peak 90 min p.i.: 132723 mm Hg) and diastolic
(baseline: 7377 mm Hg; peak 60 min p.i.: 77713 mm Hg)
blood pressure and in DEQ-ratings (baseline: 5.271.8;
60 min p.i.: 6.672.6; 230 min p.i.: 8.378.4) after d-
amphetamine intake. Heart rate and SSQ did not differ
significantly between conditions.

Imaging Results

Binding potentials obtained with the automated image
analysis software ROMI and conventional manual analysis
showed excellent correlations in all investigated ROIs:
CAU: r¼ 0.973, po0.001; PUT: r¼ 0.993, po0.001; VST:
r¼ 0.966, po0.001; GP: r¼ 0.916, po0.001.

Indicating a lack of blood-flow effects on the free and
non-specific tracer compartment, TACs obtained in
d-amphetamine and placebo scans for the reference region
CER were congruent (Figure 1). As described in detail
elsewhere (Ginovart et al, 2006b; Willeit et al, 2006), tracer
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kinetics in GP differed from those in CAU, PUT, and VST:
TACs peaked at a lower level and showed a slower washout.

In the test–retest group, there were no significant
differences in [11C]( + )-PHNO BPs between scan one and
scan two in any of the ROIs (paired t-test; Table 1). Using
absolute, that is, unsigned values of the differences between
scan one and scan two, test–retest variability of [11C]-( + )-
PHNO BPs was 8.778% for CAU, 9.978% for PUT,
18.6719% for VST, and 21.3716% for GP, respectively.

There was a significant decrease in [11C]-( + )-PHNO BPs
in d-amphetamine scans vs placebo (Table 1, Figure 2) in

CAU, PUT, and VST. Changes in GP did not reach level of
significance. Indicating significant differences for within-
subject changes in [11C]-( + )-PHNO BPs between
d-amphetamine/placebo and the test/re–test part of the
study, the interaction term ‘condition*study-part’ was
significant in all ROIs with exception of GP: CAU:
F(1)¼ 6.248, p¼ 0.022; PUT: F(1)¼ 11.637, p¼ 0.003; VST:
F(1)¼ 5.501, p¼ 0.031; GP: F(1)¼ 1.125, p¼ 0.303.

Serum d-amphetamine levels correlated significantly with
d-amphetamine induced reductions in [11C]-( + )-PHNO
BPs in all ROIs but the CAU (CAU: r¼�0.0116, p¼ 0.77;

Table 1 [11C]-(+)-PHNO Binding Potentials (BPs) Obtained in Healthy Control Subjects after Oral Ingestion of d-Amphetamine or
Placebo (n¼ 9) and under Test-Retest Conditions (n¼ 11)

Caudate Putamen Ventral striatum Globus pallidus

Placebo 1.9570.3 2.5470.2 2.6370.4 2.9070.7

d-Amphetamine 1.6970.3 2.0170.3 1.9670.4 2.6270.5

Two-tailed pa 0.001 o0.001 0.001 0.224

Relative changeb �13.277% �20.879% �24.9713% �6.5724%

Test 2.0670.3 2.8870.6 3.4071.4 3.9471.1

Re-test 2.0770.4 2.9070.6 3.3470.8 3.7571.3

Two-tailed pa 0.939 0.877 0.813 0.614

Relative changeb 1.6712% 3.0712% �7.0727% �2.1728%

aPaired t-test.
bCalculated as [(BP placebo�BP d-amphetamine)/BP placebo� 100] and [(BP scan 1�BP scan 2)/BP scan 1� 100].
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PUT: r¼ 0.682, p¼ 0.043; VST: r¼ 0.669, p¼ 0.049; GP:
r¼ 0.948, po0.001). Notably, an increase rather than a
decrease in post-d-amphetamine [11C]-( + )-PHNO BPs in
the GP measured in the three subjects with lowest serum
d-amphetamine levels contributed visibly (Figure 3) to the
high correlation coefficient found in this ROI.

Binding Potential Maps

Overall appearance of parametric BP maps was similar to
summated [11C]-( + )-PHNO PET images, dopamine D2/3

receptor rich regions were clearly delineated. Highest [11C]-
( + )-PHNO BPs were found in GP and the ventral portion of
the neostriatum. The region with statistically most significant
d-amphetamine-induced displacement of [11C]-( + )-PHNO
binding was a bilateral cluster located in the medio-ventral
portion of the striatum (Figure 4). Peak voxels were identified
at MNI coordinates x¼�14, y¼ 16, z¼�6 (T¼ 12.52,
puncorrectedo0.001), x¼ 4, y¼ 14, z¼�8 (T¼ 12.01,
puncorrectedo0.001), and x¼ 18, y¼ 16, z¼�8 (T¼ 11.71,
puncorrectedo0.001). The cluster followed the contours of the
putamen in dorso-caudal direction (Figures 4 and 5).

DISCUSSION

This study is, to our knowledge, the first to demonstrate
in vivo competition of endogenous dopamine with the new

D2/3 agonist radioligand [11C]-( + )-PHNO in humans.
Administration of d-amphetamine led to a significant
reduction in [11C]-( + )-PHNO BPs in neostriatal ROIs.
Largest reductions were found in the VST (Figure 2), a brain
region that is particularly sensitive for the actions of
psychostimulants and critical for their reinforcing properties
(Di Chiara, 1999; Kiyatkin and Brown, 2003; Wise, 2004;
Sellings et al, 2006). This result was confirmed in a voxel-wise
analysis of parametric BP maps. The specificity of the
measured signal-change is supported by significant correla-
tions between changes in [11C]-( + )-PHNO BPs and serum
d-amphetamine levels in all ROIs but CAU (Figure 3).
Congruent TACs derived in the reference region CER during
the d-amphetamine and placebo condition (Figure 1) show
that changes in free and non-specific tracer compartments
did not contribute significantly to the findings.

This being the first study on D2/3 agonist displacement in
humans, the present results will be discussed in light of
human experiments using D2/3 antagonist radioligands and
data employing agonist radioligands in animals. Several
studies have examined the effect of d-amphetamine admin-
istration on D2/3 antagonist radioligand binding in humans
(Breier et al, 1997; Farde et al, 1992; Laruelle et al, 1995; Abi-
Dargham et al, 1998; Cardenas et al, 2004; Riccardi et al,
2006). Owing to methodological differences such as d-
amphetamine administration route (most studies used
intravenous d-amphetamine administration), tracer admin-
istration (eg bolus vs bolus/constant infusion), control
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Figure 3 Correlations between serum d-amphetamine levels (Amph) and reductions in [11C]-( + )-PHNO binding potentials (D[11C]-( + )-PHNO BPs)
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ventral striatum; GP, globus pallidus.
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conditions (placebo vs no intervention), ROI delineation and
differences in scanner equipment and sample composition,
results of these studies are not directly comparable to the
present ones. However, reductions compared to baseline
described after similar doses of d-amphetamine and similar
post-intake scanning intervals lie generally between approxi-
mately 10 and 15% for the whole striatum (Breier et al, 1997;
Cardenas et al, 2004; Farde et al, 1992; Laruelle et al, 1997;
Abi-Dargham et al, 1998). Average reductions in [11C]raclo-
pride BPs described in five studies giving separate figures for
the VST (Drevets et al, 2001; Leyton et al, 2002; Martinez

et al, 2005; Munro et al, 2006; Oswald et al, 2005) are
approximately 13% for VST, 6% for CAU, and 11% for PUT.
A study performed at our PET Centre using a similar dose of
oral d-amphetamine and the same post-intake scanning
interval found reductions of 13% in striatal [11C]raclopride
BPs (Cardenas et al, 2004). However, this latter study
reported considerably higher serum d-amphetamine levels
and it used a different PET scanning system. A recent study
using a similar dose of oral d-amphetamine and the
antagonist D2/3 radioligand [18F]fallypride found reductions
of 5.6, 11.2, and 6.6% in CAU, PUT, and VST, respectively
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Figure 4 Statistical parametric map showing areas of significant d-amphetamine induced reductions (paired samples t-test) in [11C]-( + )-PHNO binding
potentials. Most significant displacement is found in a bilateral area located in the ventral striatum.
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Figure 5 Colored areas show percent decrease in [11C]-( + )-PHNO binding potentials (BPs) in d-amphetamine scans as compared to placebo scans.
Image represents mean image of nine individual subtraction images calculated as ((BPmap placebo�BPmap d-amphetamine)/BPmap placebo)� 100.

Effects of d-amphetamine on [11C]-( + )-PHNO PET
M Willeit et al

285

Neuropsychopharmacology



(Riccardi et al, 2006), reductions that are sensibly smaller
than the 13.2, 20.8, and 24.9% reductions found in these
corresponding structures with [11C]-( + )-PHNO. A notable
aspect of our results is that [11C]-( + )-PHNO BPs measured
in placebo scans were consistently lower than the ones in the
test–retest condition. One possible explanation for this result
is enhanced competition with endogenous dopamine,
released in expectation of a real drug, a finding that has
already been described using [11C]raclopride and PET (de la
Fuente-Fernandez et al, 2002). However, a direct comparison
of [11C]-( + )-PHNO with [11C]raclopride, possibly employing
a within-subject design, will help to quantify the difference
between agonist and antagonist imaging in competition
experiments. All together, it seems that reductions measured
with [11C]-( + )-PHNO in our present study are somewhat
larger than the ones generally seen with D2/3 antagonist
radioligands.

Several animal PET studies have recently reported on the
effects of d-amphetamine on in vivo D2/3 agonist radi-
oligand binding in the brain. Experiments have been carried
out using [11C]NPA (Narendran et al, 2004), [11C]MNPA
(Seneca et al, 2006), and [11C]-( + )-PHNO (Galineau et al,
2006; Ginovart et al, 2006a; Wilson et al, 2005; Narendran
et al, 2006). Some of the studies used parallel imaging with
the antagonist radioligand [11C]raclopride (Narendran et al,
2004, 2006; Seneca et al, 2006; Ginovart et al, 2006a). These
studies show clearly that the d-amphetamine-induced
displacement of agonist radioligand binding is one to two
thirds larger than that which is measured with [11C]raclo-
pride. A head-to-head comparison of d-amphetamine
induced displacement in cats showed an extrapolated
maximal reduction of 68% for [11C]raclopride BPs as
compared to 96% for [11C]-( + )-PHNO BPs (Ginovart
et al, 2006a), and direct comparisons between [11C]NPA
and [11C]-( + )-PHNO show that the latter ligand is more
sensitive to endogenous dopamine than the former one
(Ginovart et al, 2006a). Somewhat in contrast to these
findings are results obtained in rats (Wilson et al, 2005) that
show maximal reductions of 38% in [11C]-( + )-PHNO
binding even with high doses of d-amphetamine. One
important difference of this study to the aforementioned
experiments is that it was performed in un-anesthetized
animals. A preliminary report (McCormick et al, 2006)
shows that administration of volatile anaesthetics enhances
the effect of d-amphetamine on [11C]-( + )-PHNO binding.
In sum, animal evidence shows clearly that [11C]-( + )-
PHNO is more vulnerable to competition with endogenous
dopamine than [11C]raclopride, and it suggests that, besides
higher doses of d-amphetamine administered to animals,
anesthesia may in part explain the greater magnitude of
[11C]-( + )-PHNO displacement observed in animal studies
as compared to the present study.

A peculiarity of [11C]-( + )-PHNO PET is the high BPs
measured in GP. Tracer kinetics in GP proved to be
different from those in neo-striatal regions, and no
significant post-amphetamine reductions were found in
the GP. Peak-uptake in GP was lower than in VST, CAU
or PUT, and radioligand-washout considerably slower
(Figure 1). Since equilibrium is reached later in the GP
and since it is more sustained, activity measured in GP
throughout the later part of the scanning session con-
tributes substantially more to BP measures derived with

SRTM than late-scan activity in neo-striatal ROIs (Ginovart
et al, 2006b). As a direct consequence, the more noisy late
parts of TACs increase variability of BP measurements in
the GP. As shown in Figure 1, peak uptake in VST was
slightly lower than in CAU and PUT. Although not to the
extent seen in GP, tracer washout from VST seemed to be
relatively slow, leading to a more extended equilibrium with
greater weight of the late, more ‘noisy’ parts of the TACs in
VST as well. This might explain in part the high variability
observed in GP and VST, and it may have contributed to
the lack of significant post-d-amphetamine reductions in
the GP. On the other hand, three individuals with very low
d-amphetamine levels showed an increase rather than a
decrease in post-d-amphetamine [11C]-( + )-PHNO BPs in
GP (Figure 2). As seen easily in Figure 3, this increase
contributed substantially to the highly significant correla-
tion between serum d-amphetamine-levels and [11C]-( + )-
PHNO BPs in GP. As of yet, it is unclear whether this
finding is caused by any real physiological processes in
response to low-dose d-amphetamine, or whether this is a
spurious finding relating to the high test-retest variability of
[11C]-( + )-PHNO PET in the GP. However, a recent study in
baboons (Narendran et al, 2006) shows prominent (60%)
d-amphetamine induced displacement of [11C]-( + )-PHNO
also in GP. It might be worth noting that in the present
human study, displacement in GP was significant as well
(21.979%, t(5)¼�5.254, p¼ 0.003) if the three subjects
displaying serum d-amphetamine levels more than two SE
below the mean were not included into the analysis.

It is unknown up to date what causes the particular
binding pattern of [11C]-( + )-PHNO in GP and the relatively
high binding to ventral striatal structures. Evidence points
towards a greater role of D3 over D2 receptors in [11C]-( + )-
PHNO binding in GP, and to a greater role of D3 in VST as
compared to CAU and PUT. First, anatomical distribution
of [11C]-( + )-PHNO uptake, with high BPs in GP and
ventral portions of the neo-striatum, regions where post-
mortem studies have shown relatively high densities of D3

receptors (Seeman et al, 2006; Gurevich and Joyce, 1999;
Murray et al, 1994), is compatible with a significant
contribution of D3 receptors to the captured signal. Second,
some studies point towards a higher in vitro (Freedman
et al, 1994) and in vivo (Narendran et al, 2006) affinity
of [3H]-( + )-PHNO for D3 over D2 receptors. On the
other hand, there is evidence suggesting that the affinity of
[11C]-( + )-PHNO for D2

high is considerably higher than the
affinity for D3 receptors (Seeman et al, 2005), and in
contrast to pretreatment with the partial D3 receptor agonist
BP897 in baboons (Narendran et al, 2006), pre–treatment
with the D3 antagonist SB-277011 did not significantly
reduce [11C]-( + )-PHNO binding in the cat striatum
(Ginovart et al, 2006a). However, reductions in [11C]-( + )-
PHNO BPs after d-amphetamine in this study were largest
in VST, but smallest in GP. It is thus unlikely that binding to
D3 receptors alone accounts for both observations. Other
factors, such as regional differences in the amount of
dopamine released, should be considered in the interpreta-
tion of this finding. In sum, while not conclusive so far,
evidence points to an important contribution of D3 receptor
binding to the high BPs measured in GP.

Although competitive inhibition of radioligand binding is
the hypothesis most commonly put forward to explain
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reductions in radioligand binding after d-amphetamine
administration, several observations suggest that other
mechanisms such as receptor internalization (Sun et al,
2003) or changes in receptor affinity (Ginovart et al, 2004)
could contribute to this effect (for review see Ginovart,
2005; Laruelle, 2000). It is thus a limitation of the present
studyFas of all other competition studies performed with
D2/3 antagonist radioligands in humansFthat the metho-
dology does not allow to identify the exact mechanism
leading to decreased radioligand binding after d-ampheta-
mine administration. Another limitation of the present
study is that we did not apply correction for partial volume
effects (PVEs). Since ROIs such as GP and VST are relatively
small for resolutions reached by current PET scanning
systems, and since they are adjacent to receptor-rich
regions such as PUT, correction for PVEs can be expected
to add to the reliability of d-amphetamine-induced BP
changes in this regions. However, a recent study using
[11C]raclopride showed that correction for PVEs resulted in
higher estimates of the d-amphetamine effect in the VST of
healthy subjects (Martinez et al, 2005), suggesting that,
if anything, we might have underestimated the actual
d-amphetamine effects on [11C]-( + )-PHNO BPs in the VST.

A peculiarity of this study was that we observed nausea
(in one case vomiting) after injection of [11C]-( + )-PHNO.
Nausea and emesis are typical unwanted drug effects during
treatment with dopamine agonists. Injected radioligand
mass was by no means higher than what is usually
administered in PET studies using antagonist radioligands.
Still, the close temporal contiguity between tracer injection
and nausea is suggestive for a pharmacological effect of
[11C]-( + )-PHNO, and, possibly owing to the presence of
spare D2

high states, some of the pharmacological effects of
dopamine agonists, such as inhibition of prolactin secretion
(Meller et al, 1991), have been shown to occur at low
receptor occupancies. According to the tracer principle, a
radioligand should not perturb the biological system it is
measuring. Although nausea might be interpreted as an
indication that the tracer principle was violated in the
present study, evidence suggests that this is unlikely to be
the case. First, estimation of central receptor occupancy
during [11C]-( + )-PHNO PET according to the method
described by Hume et al (1998) results in a mean7SD
occupancy of 1.670.5% when using an ED50 value of
7.7 nmol/kg as measured in vivo in cats (Ginovart;
unpublished observation). This is similar to what has been
described for [11C]raclopride PET (Nordström et al, 1992).
Second, the ED50 of ( + )-PHNO for inducing emesis in
animal experiments is two orders of magnitude smaller than
the ED50 for inducing motor effects or stereotyped behavior
(Martin et al, 1984). Third, therapeutic ( + )-PHNO plasma
levels, even at the low end, are at least three orders of
magnitude higher than what is measured after a single
injection of approximately 2mg total tracer mass as used in
our study (Coleman et al, 1990; Ginovart et al, 2006b).
Finally, ( + )-PHNO-induced emesis is readily prevented by
pretreatment with peripherally acting dopamine receptor
antagonists in animals (Martin et al, 1984; Nomoto et al,
1987) and humans (Grandas et al, 1987). In sum, nausea is
most likely a peripheral effect caused by even minute doses
of ( + )-PHNO acting at dopamine receptors outside the
blood brain barrier in the area postrema (Carpenter, 1990).

Pretreatment with a peripheral dopamine receptor antago-
nist may be a viable strategy to avoid [11C]-( + )-PHNO
induced nausea in future studies.

SUMMARY

This study is the first to demonstrate in vivo competition
between endogenous dopamine and a D2/3 agonist radi-
oligand in humans. With exception of GP, the study showed
clear-cut d-amphetamine effects in all striatal ROIs, and
d-amphetamine-induced reductions in [11C]-( + )-PHNO
binding were larger than those reported for D2/3 antagonist
radioligands in the literature. Our data suggest that, in spite
of relatively high test-retest variability, [11C]-( + )-PHNO
might be a superior radioligand for investigating alterations
in pre-synaptic dopamine release in patients with schizo-
phrenia and other psychiatric disorders.
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