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The content of the endogenous NMDA and a7 nicotinic acetylcholine receptor antagonist kynurenate (KYNA) is increased in the

cerebral cortex and cerebrospinal fluid of patients with schizophrenia. In view of the very high incidence of smoking in schizophrenic

individuals, a study was designed to examine the effect of acute and prolonged nicotine administration on brain KYNA levels in

experimental animals. Adult male rats received subcutaneous nicotine injections twice daily for up to 10 days, and animals were routinely

killed 1 h after the last injection. Neither acute treatment nor a 2-day regimen with 1mg/kg nicotine (¼ 0.35mg/kg pure base) caused

changes in cerebral KYNA levels. Four- or 6 day-treatment with this dose resulted in 20–40% decreases in cerebral KYNA content.

Animals treated with 1 or 10mg/kg nicotine for 10 days showed dose-dependent, significant increases in KYNA in hippocampus, striatum,

and cortex, but not in the serum. Discontinuation of nicotine treatment for 7 days restored brain KYNA to control levels. Separate

animals, implanted with osmotic minipumps delivering 2mg/kg of nicotine/day for 10 days also showed significant elevations in brain

KYNA. Hippocampal microdialysis, performed in animals receiving nicotine (1mg/kg) for 10 days, revealed a significant increase in basal

extracellular KYNA levels compared to controls, whereas acute treatment with this dose produced no such change. Measurements of

KYNA’s bioprecursor kynurenine in brain or blood did not reveal any nicotine-induced changes. These results indicate that nicotine has a

brain-specific, biphasic effect on the transamination of kynurenine to KYNA. Such nicotine-induced fluctuations in brain KYNA may cause

functional changes in processes that regulate glutamatergic and cholinergic neurotransmission in the normal and diseased brain.
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INTRODUCTION

Several lines of evidence suggest a role of nicotinic
acetylcholine receptors (nAChRs) in the pathophysiology
of schizophrenia (Adler et al, 1998; Guan et al, 1999; Breese
et al, 2000; Leonard et al, 2000). This connection was
initially proposed because of the high incidence of heavy
smoking in schizophrenic individuals (Hughes et al, 1986;
Lohr and Flynn, 1992). It was found later that nicotine can
normalize auditory gating and visual attention deficits,
which are prominent pathological features of schizophrenia
(Adler et al, 1993; Sherr et al, 2002). This could conceivably
be mediated by the a7 subtype of the nAChR, which is
known to be critically involved in cognitive functions (Levin
and Simon, 1998). An intuitively attractive inference of

these studies is, therefore, that patients smoke heavily in an
attempt to self-medicate, that is to correct various sensory
abnormalities that are associated with the disease (Sandyk
and Kay, 1991; Adler et al, 1993; Olincy et al, 1998). In line
with this reasoning, auditory gating in animals can be
specifically disrupted by selective antagonists of the a7
nAChR (Luntz-Leybman et al, 1992; Stevens et al, 1996,
1998). Conversely, a7 nAChR stimulation normalizes the
auditory gating deficit that is observed in rats that have
been reared in social isolation (O’Neill et al, 2003). These
considerations have stimulated the development of a7
nAChR agonists such as ARR-17779 (Mullen et al, 2000),
which interact directly with the binding site for acetylcho-
line, or of drugs such as galantamine (Reminyls), which
increase nAChR activity by interacting with a site close to,
but distinct from, the acetylcholine-binding site (Pereira
et al, 1994, 2002; Samochocki et al, 2003). It is also
noteworthy that one measure of sensory gating abnormal-
ities, diminished inhibition of the P50 evoked response to
repeated auditory stimuli, has been linked to the chromo-
some 15q14 locus of the a7 nAChR gene (Freedman et al,
1997; Riley et al, 2000).
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Compared to control subjects with similar smoking
habits, a7 nAChR density is reduced in the cerebral cortex
and hippocampus of individuals with schizophrenia (Freed-
man et al, 1995; Adler et al, 1998; Leonard et al, 2000; Guan
et al, 1999). Therefore, since cerebral a7 nAChRs are
normally upregulated in heavy smokers (Benwell et al, 1988;
Breese et al, 2000) and after chronic nicotine administration
in animals (Olale et al, 1997; Sparks and Pauly, 1999), a7
nAChRs in patients appear to have an abnormally blunted
reaction to excessive smoking. This could be due to a
dysfunction in any of several distinct endogenous mechanisms,
which normally control a7 nAChR expression and activity in
the brain (Albuquerque et al, 1997; Pereira et al, 2002).
In a first attempt to investigate the possible role of one of

these mechanisms, we examined the effect of nicotine on
kynurenic acid (KYNA), a tryptophan metabolite that is
present in the mammalian brain in nanomolar concentra-
tions (Moroni et al, 1988; Turski et al, 1988). KYNA, long
known as an antagonist of the glycine coagonist site of the
NMDA receptor (Kessler et al, 1989), blocks a7 nAChR
activity at even lower, endogenous brain concentrations
(Hilmas et al, 2001), and reductions in brain KYNA levels
were recently found to increase a7 nAChR function
(Alkondon et al, 2004). It is therefore conceivable that
nicotine-induced fluctuations in brain KYNA levels influ-
ence the activity of a7 nAChRs (Hilmas et al, 2001). This
concept, and the recent demonstration that KYNA levels are
elevated in cortical brain regions and cerebrospinal fluid of
schizophrenic patients (Erhardt et al, 2001a; Schwarcz et al,
2001) and that elevations in brain KYNA disrupt auditory
sensory gating (Shepard et al, 2003), prompted us to
examine the consequences of acute and prolonged nicotine
administration on the disposition of KYNA and its
bioprecursor kynurenine in rats. Our data, some of which
have been communicated in a preliminary fashion (Hilmas
et al, 2001), revealed that nicotine causes biphasic, brain-
specific changes in KYNA levels without affecting the brain
concentrations of kynurenine.

MATERIALS AND METHODS

Materials

KYNA, L-kynurenine, and nicotine (bitartrate salt) were
purchased from Sigma Chemical Co. (St Louis, MO). All
other chemicals were of the highest commercially available
purity.

Animals

Adult male Sprague–Dawley rats (200–220 g) were pur-
chased from Charles River Laboratories (Kingston, NY).
The animals were housed in an AAALAC-approved animal
facility under standard laboratory conditions, tht is, a 12/
12 h light/dark cycle with free access to food and water. The
experimental protocol was approved by the Institutional
Animal Care and Use Committee of the University of
Maryland, Baltimore.

Drug Administration

Nicotine was dissolved in phosphate-buffered saline (PBS;
pH 7.4) and administered either subcutaneously (s.c.) twice

daily (every 12 h) or via osmotic minipumps (Alzet, Alza
Corp., Palo Alto, CA; delivering 2mg/kg of nicotine/day).
Control animals received appropriate vehicle treatments.
Animals treated s.c. were killed 1 h after the final injection,
and animals treated with osmotic minipumps were killed on
the morning of the final day of treatment.

Microdialysis

Microdialysis was performed as reported previously (Wu
et al, 1992). Briefly, the animals were anesthetized with
chloral hydrate (360mg/kg, i.p.) and mounted in a David
Kopf stereotaxic frame. A guide cannula (outer diameter:
0.65mm) was positioned on top of the hippocampus (AP:
3.4mm posterior to bregma, L: 2.3mm from the midline, V:
1.5mm below the dura) and secured to the skull with
anchor screws and acrylic dental cement. At least 20 h after
surgery, a microdialysis probe (CMA/10, membrane length:
2mm, Carnegie Medicin, Stockholm, Sweden) was inserted
through the guide cannula, extending throughout the
hippocampus. The probe was connected to a microperfu-
sion pump (CMA/100, Carnegie Medicin) set to a speed of
1ml/min and perfused with Ringer solution containing (in
mM): NaCl, 144; KCl, 4.8; MgSO4, 1.2; CaCl2, 1.7; pH 6.7. In
acute experiments, dialysate was collected every 30min for
a total of 7 h. In experiments where nicotine was
administered for 10 days, animals received an additional
injection of nicotine (1mg/kg) 2 h after the collection of
baseline samples, and microdialysis continued for an
additional 7 h.

KYNA and Kynurenine Determination

Animals were killed by decapitation, and trunk blood was
collected when indicated. The brain was removed, and
hippocampus, striatum, and frontal cortex were rapidly
dissected out, placed on dry ice and stored at �801C. On the
day of the assay, the tissue was thawed and homogenized
(1 : 10, w/v) in ultrapure water. A 300 ml aliquot of the
homogenate was acidified with 75 ml of 6% perchloric acid.
After centrifugation (10min, 12 000g), an aliquot of the
supernatant was diluted (1 : 1, v/v) with HPLC mobile phase
(200mM zinc acetate containing 3.5% acetonitrile, pH 6.2).
A 200 ml aliquot of the sample was applied to a C18 reverse-
phase HPLC column (150� 4.6mm; Alltech Associates,
Deerfield, IL, USA; flow rate: 1.0ml/min), and KYNA was
eluted isocratically with a retention time of approximately
5min. KYNA was detected fluorimetrically using a Perkin–
Elmer LC 240 Fluorescence Detector (Beaconsfield, UK;
excitation wavelength: 344 nm; emission wavelength:
398 nm).
To determine extracellular hippocampal KYNA levels,

30 ml microdialysate fractions were directly applied to the
HPLC column, and KYNA was measured as described
above.
For the measurement of kynurenine, 200 ml of the diluted

acidic supernatant used for KYNA determination were
applied to the same HPLC system described above.
Kynurenine was eluted with a retention time of approxi-
mately 4min and detected by UV spectroscopy at 365 nm
(Beckman 160 Absorbance detector, Fullerton, CA, USA).
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To determine serum levels of kynurenine and KYNA,
trunk blood was immediately centrifuged (10min, 12 000g).
The supernatant plasma was diluted (1 : 5, v/v) with
ultrapure water and acidified with 75 ml of 6% perchloric
acid. After centrifugation (5min, 12 000g), an aliquot of the
serum was further diluted (1 : 1, v/v) with HPLC mobile
phase, and 200 ml were subjected to HPLC analysis as
described above.
All chromatographic data were recorded using a Hewlett-

Packard 3390 A integrator.

Protein Determination

Protein was determined in aliquots of the original tissue
homogenate according to the method of Lowry et al (1951).

Data Analysis

Microdialysis data were not corrected for recovery from the
probe (B20%; Wu et al, 1992). For all experiments, a
repeated-measures analysis of variance (ANOVA) with
appropriate post hoc analysis was used. A p-value of
o0.05 was considered significant in all analyses.

RESULTS

Acute Nicotine Administration

To determine the acute effects of nicotine on cerebral KYNA
levels, animals received a single injection of nicotine (1mg/
kg (¼ 0.35mg/kg free base)). Examined after 1 or 2 h, this
treatment did not cause significant changes in forebrain
tissue KYNA (in fmol/mg protein: control, 163.5717.3; 1 h,
164.1728.6; 2 h, 166.2733.0; n¼ 5 per group). Measure-
ment of extracellular KYNA concentrations in hippocampal
dialysates, too, revealed no acute effect of nicotine (1mg/kg)
for up to 5 h (n¼ 5).

Repeated Nicotine Administration: Dose Dependency

A 10-day treatment with nicotine caused dose-dependent
increases in tissue KYNA levels in hippocampus, striatum,
and frontal cortex. Whereas 0.1mg/kg of nicotine was
ineffective, 1mg/kg of nicotine resulted in a 34–45%
increase, and 10mg/kg of nicotine caused an 82–107%
increase in KYNA content in the three brain areas (Figure 1).
These differences were found to be statistically significant in
all brain regions sampled.
The tissue content of KYNA’s bioprecursor kynurenine,

too, was determined in the brains of animals receiving PBS
or 1mg/kg nicotine for 10 days (n¼ 5 per group). The levels
of kynurenine (in pmol/mg protein) in nicotine-treated
rats (hippocampus, 2478; striatum, 2373; frontal cortex,
2076) were not significantly different from those in PBS-
treated rats (hippocampus, 2073; striatum, 2275; frontal
cortex, 2476).

Repeated Nicotine Administration: Time Dependency

The time course of nicotine-induced changes in tissue
KYNA content was examined in separate animals (Figure 2).
After repeated administration of nicotine (1mg/kg) for 2, 4,

6, 8, or 10 days, KYNA levels in hippocampus, striatum, and
frontal cortex underwent biphasic changes over time.
Repeated injections for 4 or 6 days resulted in 14–35%
reductions in KYNA levels, which reached statistical
significance in hippocampus and striatum. In contrast, a
10-day treatment with nicotine caused an approximately
40% increases in KYNA levels in all three brain areas (cf
Figure 1). Treatment for 2 or 8 days had no significant effect
on endogenous KYNA.

Repeated Nicotine Administration: Effect on
Extracellular KYNA Levels

To examine if changes in tissue levels are paralleled by
changes in extracellular KYNA, hippocampal microdialysis
was performed in rats treated with nicotine (1mg/kg) for 10
days (Figure 3). The basal levels of KYNA in the nicotine-
treated animals (3.670.4 nM) were significantly higher than
in PBS-treated controls (2.470.5 nM). An additional acute
injection of 1mg/kg nicotine after the fourth sample
collection, that is after 2 h of baseline determination, did
not cause a significant change in extracellular KYNA levels
in either nicotine- or PBS-treated rats.

Prolonged Nicotine Infusion Via Minipumps

Administration of nicotine (2mg/kg (¼ 0.7mg/kg free base)
per day) via osmotic minipumps for 10 days resulted in a
significant, approximately 70%, increase in KYNA content
in hippocampus, striatum, and frontal cortex, compared to
PBS-treated controls (Figure 4).

Repeated Nicotine Administration: Effect of Drug
Discontinuation

To determine the reversibility of the nicotine effect,
repeated treatment with nicotine (1mg/kg) was stopped
after 10 days, and KYNA levels were determined in
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Figure 1 Dose-dependent effects of repeated nicotine administration
(s.c., b.i.d. for 10 days) on KYNA levels in various brain regions. Experiments
were conducted as described in the text. Data are expressed as the mean
þ SEM (n¼ 5 per group). *po0.05 vs PBS-injected animals, #po0.05 vs
1mg/kg nicotine (repeated measures ANOVA followed by Bonferroni’s
post hoc test for multiple comparisons).
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hippocampus, striatum, and frontal cortex 7 days later.
Compared to animals tested immediately after 10 days of
repeated nicotine treatment, brain KYNA in these rats was
significantly reduced and had in fact returned to control
levels (Figure 5). In separate animals, an additional single
challenge with nicotine (1mg/kg) 7 days after nicotine
discontinuation failed to affect brain KYNA levels (Figure 5).

Repeated Nicotine Administration: Kynurenine and
Kyna Content in Serum

Serum levels of kynurenine and KYNA were measured in
animals that received repeated injections of nicotine (1mg/
kg) for 2, 4, 6, 8, or 10 days. None of these treatment
regimens caused changes in the levels of either metabolite
(Table 1).

DISCUSSION

The present study demonstrated that prolonged, but not
acute, nicotine administration causes significant changes in
KYNA levels in the rat brain. In agreement with an earlier,
preliminary experiment (Hilmas et al, 2001), these nicotine-
induced changes were biphasic in nature, that is an initial
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Figure 2 Time-dependent effects of nicotine (1mg/kg, s.c., b.i.d. for 2, 4,
6, 8, or 10 days) on KYNA levels in the hippocampus (a), striatum (b), and
frontal cortex (c). PBS-injected control animals contained 146.4718.4
(hippocampus), 131.1717.4 (striatum), and 135.2716.2 (frontal cortex)
fmol KYNA/mg protein. Experiments were conducted as described in the
text. Data are expressed as the meanþ SEM (n¼ 5 per time point).
*po0.05 vs PBS-injected animals (repeated measures ANOVA followed
by Bonferroni’s post hoc test for multiple comparisons).
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Figure 3 Effect of repeated nicotine (1mg/kg, s.c., b.i.d. for 10 days) or
PBS administration on extracellular KYNA levels in the hippocampus.
Experiments were conducted as described in the text. Data are the
mean7SEM of five animals per group. Nicotine treatment significantly
elevated baseline extracellular KYNA concentrations (po0.05 vs PBS-
injected animals; repeated measures ANOVA followed by Bonferroni’s post
hoc test for multiple comparisons). No changes in extracellular KYNA were
seen after an additional acute injection of nicotine (1mg/kg, s.c.) in these
animals (arrow; p40.05 vs the respective baseline; repeated measures
ANOVA followed by Bonferroni’s post hoc test for multiple comparisons).
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Figure 4 Effects of prolonged nicotine infusion (2mg/kg/day for 10 days)
on KYNA levels in various brain regions. Experiments with osmotic
minipumps were conducted as described in the text. Data are expressed as
the meanþ SEM (n¼ 5 per group). *po0.05 vs PBS-treated animals
(repeated measures ANOVA followed by Bonferroni’s post hoc test for
multiple comparisons).
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significant reduction in KYNA was observed after 4 or 6
days of repeated injections, whereas a significant increase in
KYNA was seen when nicotine was given for 10 days. These
nicotine-induced fluctuations were not brain region-specific
since similar effects were observed in the hippocampus,
striatum, and frontal cortex. However, they were not
accompanied by changes in the serum levels of KYNA.
The increases in brain tissue KYNA levels observed after 10
days of nicotine treatment were reversible, dose-dependent
and, as documented by hippocampal microdialysis, asso-
ciated with quantitatively similar elevations in the extra-
cellular compartment. These results also resembled the
increases in brain KYNA levels that were seen when the
drug was injected s.c. twice daily (mimicking smoking) or
administered by chronic infusion (mimicking a nicotine
patch) for 10 days. Finally, nicotine treatment was found to

have no effect on the concentration of KYNA’s immediate
bioprecursor, kynurenine, in brain or serum.
KYNA is a product of the kynurenine pathway of

tryptophan degradation. In the mammalian brain, KYNA
is formed through irreversible transamination of kynur-
enine by kynurenine aminotransferases (Guidetti et al,
1997). These enzymatic processes take place predominantly
in astrocytes (Ceresoli-Borroni et al, 1999a; Guillemin et al,
2001; Kiss et al, 2003), which then readily liberate newly
synthesized KYNA into the extracellular space for possible
receptor interactions (Turski et al, 1989). Notably, KYNA
production is controlled by several distinct factors and
mechanisms. Some, such as kynurenine, competing amino-
acid substrates, and 2-oxoacids, operate both in the
periphery and in the brain. Others, for example the decrease
in KYNA formation effected by reduced cellular energy
metabolism or by depolarizing agents such as potassium or
veratridine, are brain-specific (Gramsbergen et al, 1997). It
remains to be seen if and to what extent astrocytic a7 nACh
(Sharma and Vijayaraghavan, 2001) or NMDA (Krebs et al,
2003) receptors can directly influence cerebral KYNA
formation.
KYNA formation can also be reduced by dopaminergic

compounds such as amphetamine (Rassoulpour et al, 1998),
L-DOPA (Wu et al, 2002), or selective dopamine receptor
agonists (Poeggeler et al, 1998). These effects, too, are
brain-specific and therefore qualitatively similar to the
effect of prolonged nicotine administration described here.
In fact, it is possible that dopaminergic mechanisms
participate in the biphasic effects of nicotine on brain
KYNA reported in the present study. Thus, nAChRs show
both desensitization (Marks et al, 1983; Castro and
Albuquerque, 1995) and subsequent supersensitivity
(Schwartz and Kellar, 1983, 1985; Wonnacott et al, 1990)
in response to repeated or chronic nicotine treatment, and
these adaptive changes may influence the nAChRs-mediated
regulation of extracellular dopamine (Harsing et al, 1992;
Marshall et al, 1997). In other words, nicotine could cause
biphasic changes in brain KYNA formation indirectly by
controlling dopamine release linked to nAChR activation.
Alternatively or in addition, the effects of prolonged

nicotine administration on brain KYNA levels may involve
glutamatergic mechanisms. Thus, activation of presynaptic
a7 nACh receptors is associated with enhanced glutamater-
gic transmission (Alkondon et al, 1996; Gray et al, 1996).
Chronic nicotine treatment results in changes in astrocytic
glutamate transporters (Lim and Kim, 2001) and causes the
functional upregulation of ionotropic glutamate receptors
(Risso et al, 2004). These phenomena result in abnormal
glutamatergic activity in response to prolonged nicotine
treatment and could, in turn, compromise cerebral KYNA
formation (Wu et al, 1992).
In neurobiological research, high concentrations of

KYNA (X1mM) are frequently used as a tool to block all
ionotropic glutamate receptors (Perkins and Stone, 1982).
Consequently, intracerebral application of large amounts of
KYNA has long been known to exert neuroprotective and
anticonvulsant effects in experimental animals (Foster et al,
1984). At much lower concentrations, KYNA inhibits the
strychnine-insensitive glycine coagonist site of the NMDA
receptor (IC50: 8mM; Kessler et al, 1989), and recent
evidence favors a physiological action of KYNA as an
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Figure 5 Effect of discontinuation of prolonged nicotine treatment. Two
groups of animals received either PBS or nicotine (1mg/kg, s.c., b.i.d.) for 10
days (n¼ 5 per group). Two other groups received nicotine (1mg/kg, s.c.,
b.i.d.) for 10 days. Nicotine administration was then discontinued. After 7
days, the animals received a single s.c. injection of either PBS (‘Discont.þ
PBS’; n¼ 5) or nicotine (1mg/kg; ‘Discont.þ nicotine’; n¼ 5) and were
killed 1 h later. *po0.05 vs PBS; #po0.05 vs nicotine (repeated measures
ANOVA followed by Bonferroni’s post hoc test for multiple comparisons).
No changes were seen between ‘Discont.þ PBS’ and ‘Discont.þ nicotine’
animals (p40.05; repeated measures ANOVA followed by Bonferroni’s
post hoc test for multiple comparisons).

Table 1 Blood Kynurenine and KYNA Levels in Nicotine-Treated
Rats

PBS (pmol/mg protein) Nicotine (pmol/mg protein)

Days Kynurenine Kynurenic acid Kynurenine Kynurenic acid

2 3174 0.31370.030 2777 0.32870.028

4 2875 0.30070.018 3275 0.32370.030

6 3476 0.31770.028 2876 0.33070.020

8 2274 0.32870.030 3078 0.32870.010

10 2973 0.31370.020 3175 0.33070.038

Animals were killed 1 h after the final injection of nicotine (1mg/kg, s.c., b.i.d.),
and the blood was processed as described in the text. Data are the mean7SEM
(n¼ 5 per group). No significant differences between PBS- and nicotine-treated
rats were found (repeated measures ANOVA followed by Bonferroni’s post hoc
test for multiple comparisons).
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allosteric, noncompetitive antagonist of the a7 nAChR
(Hilmas et al, 2001; Alkondon et al, 2004). Endogenous
KYNA may therefore affect neuronal excitability and
vulnerability by directly or indirectly interfering with both
cholinergic and glutamatergic neurotransmission (Harris
et al, 1998; Poeggeler et al, 1998; Cozzi et al, 1999; Wu et al,
2000; Pereira et al, 2002; Schwarcz and Pellicciari, 2002;
Sapko et al, 2003). Further, the changes in cerebral KYNA
levels observed after prolonged nicotine administration may
account for the ability of nicotine to influence neuronal
viability in vivo (Akaike et al, 1994; Marin et al, 1994;
O’Neill et al, 1998).
The present findings are also relevant for the pathophy-

siology of schizophrenia since both glutamate receptor and
a7 nAChR dysfunction have been implicated in the disease
process (Carlsson and Carlsson, 1990; Freedman et al, 1995;
Tamminga, 1998; Leonard et al, 2000; Schilstr +om et al, 2000;
Coyle and Tsai, 2004). Thus, the elevated levels of KYNA
measured in the brain and cerebrospinal fluid (Erhardt et al,
2001a; Schwarcz et al, 2001) may contribute to the
presumed hypoglutamatergic and hypocholinergic tone in
schizophrenic individuals. Since brain KYNA levels are
decreased 4 and 6 days after repeated nicotine administra-
tion, excessive smoking in the schizophrenic population
could constitute an attempt to self-medicate (cf Introduc-
tion). Indeed, a reduction in brain KYNA enhances
nicotinic and glutamatergic transmission (Alkondon et al,
2004) and could thus normalize gating (Adler et al, 1993)
and eye-tracking (Olincy et al, 1998; Avila et al, 2003),
deficit, and improve cognitive function (Mori and Mishina,
2003). However, the present data suggest that more
prolonged exposure to nicotine may have the opposite,
detrimental effects on sensory and cognitive modalities
since brain KYNA levels are elevated (cf Shepard et al,
2003). In fact, even relatively modest increases in brain
KYNA are known to significantly influence the electro-
physiological properties of monoaminergic neurons (Er-
hardt et al, 2000, 2001b, 2002; Schwieler and Erhardt, 2003).
The results described here raise several interesting issues

for future research. For example, further studies will be
required to elucidate the molecular and cellular mechan-
isms that underlie the biphasic effects of extended nicotine
administration on cerebral KYNA formation and the
reversal of brain KYNA to normal levels upon treatment
cessation. In addition, the functional consequences of
fluctuations in cerebral KYNA levels in response to
prolonged exposure to nicotine, especially the effects on
cholinergic and glutamatergic neurotransmission, need to
be explored in detail. It will be especially important to
evaluate whether concurrent treatment with antipsychotic
drugs influences nicotine-induced changes in brain KYNA.
Thus, neuroleptics are known to have reciprocal interac-
tions with nicotine (Jann et al, 1986; Miller et al, 1990; Lee
et al, 2001), affect smoking behavior (George et al, 1995)
and, when administered chronically, reduce brain KYNA
levels in rats (Ceresoli-Borroni et al, 1999b; cf also Schwieler
and Erhardt, 2003). Evidence for interactions between
prolonged nicotine and neuroleptic treatments in determin-
ing brain KYNA formation would further support the
suggestion (Court et al, 1998) that smoking history be
carefully assessed and considered in future biochemical
studies in schizophrenic individuals.

In summary, the present results demonstrate that
prolonged nicotine administration in rats has a brain-
specific, biphasic and reversible effect on KYNA levels.
Nicotine-induced fluctuations in brain KYNA may cause
changes in glutamatergic and cholinergic neurotransmis-
sion and may play a role in the beneficial effects of nicotine
in patients suffering from schizophrenia or other brain
diseases. By inference, our study suggests possible clinical
benefits from direct pharmacological manipulations of
cerebral KYNA levels, which can be achieved by targeting
enzymes of the kynurenine pathway (Schwarcz and
Pellicciari, 2002).
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