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Several lines of investigation support a hypothesis of glutamatergic dysfunction in schizophrenia, including our recent reports of altered

NMDA receptor subunit and associated intracellular protein transcripts in the thalamus of elderly patients with schizophrenia. In the

present study, we used in situ hybridization to measure the expression of NMDA subunits (NR1, NR2A-D), and associated intracellular

proteins (NF-L, PSD95, and SAP102) in a second, younger cohort from the Stanley Foundation Neuropathology Consortium, which

included patients with both schizophrenia and affective disorders. We wanted to determine whether glutamatergic abnormalities in the

thalamus in schizophrenia are present at younger ages, and whether these abnormalities occur in other psychiatric illnesses. In the present

work, we observed increased expression of NMDA NR2B subunit transcripts, and decreased expression of all three associated

postsynaptic density protein transcripts in schizophrenia. We also found evidence of glutamatergic dysfunction in the thalamus in affective

disorders, particularly in bipolar disorder. In particular, we found decreased NF-L, PSD95, and SAP102 transcripts in bipolar disorder, and

decreased SAP102 levels in major depression. Interestingly, one of the most consistent findings across diagnostic groups was an

abnormality of intracellular signaling molecules that are linked to the NMDA receptor, rather than changes in the receptor subunits

themselves. PSD95 and similar scaffolding molecules link the NMDA receptor with intracellular enzymes that mediate signaling, and also

provide a physical link between different neurotransmitter systems to coordinate and integrate information from multiple effector

systems. Abnormalities of PSD95-like molecules and other intracellular signaling machinery may contribute to dysregulated

communication between multiple neurotransmitter systems (such as glutamatergic and dopaminergic systems) that are potentially

involved in the neurobiology of schizophrenia and affective disorders.
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INTRODUCTION

The thalamus is composed of numerous topographically
organized nuclei that reciprocally project to limbic, sensory,
and motor regions of the cerebral cortex. While the
thalamus has traditionally been considered a simple relay
station, it plays a substantial role in processing and
integrating incoming sensory information by not only
transmitting information to the cortex but also regulating
the ability of the cortex to process this information (Jones,
1998). Numerous post-mortem and in vivo imaging studies
report structural (Andreasen et al, 1994; Buchsbaum et al,
1996; Byne et al, 2001; Gilbert et al, 2001; Pakkenberg, 1990;

Popken et al, 2000) and functional (Hazlett et al, 1999;
Silbersweig et al, 1995; Tamminga et al, 1992) abnormalities
of the thalamus in schizophrenia, including reduced
thalamic cell number and volume, and decreased metabo-
lism (for a review of these findings see Clinton and Meador-
Woodruff, 2003). Despite mounting evidence for structural
pathology and thalamic dysfunction in schizophrenia,
relatively few studies have examined the neurochemical
substrates that may accompany these changes (Clinton et al,
2003; Ibrahim et al, 2000b; Oke and Adams, 1987; Smith
et al, 2001a, b).
Thalamocortical projections, corticothalamic projections,

and sensory afferents to the dorsal thalamus primarily use
glutamate as a neurotransmitter, which activates both
ionotropic and metabotropic glutamate receptors expressed
throughout the thalamus (Ibrahim et al, 2000a; Jones et al,
1998). Several lines of investigation implicate glutamatergic
dysfunction in schizophrenia (Coyle, 1996; Goff and Wine,
1997; Olney et al, 1999). The glutamate hypothesis of
schizophrenia is based largely on the observation that
NMDA receptor antagonists like phencyclidine can trigger a
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schizophrenia-like syndrome in healthy subjects, and
exacerbate symptoms in schizophrenia (Lahti et al, 1995).
Post-mortem studies have revealed NMDA receptor ab-
normalities in several limbic structures implicated in
schizophrenia, including the prefrontal cortex (Dracheva
et al, 2001), hippocampus (Gao et al, 2000), and thalamus
(Ibrahim et al, 2000b). Further, clinical trials have shown
that treating patients with a combination of standard
neuroleptics and drugs that promote NMDA receptor
function, such as D-cycloserine, an agonist of the glycine/
D-serine co-agonist site of the NMDA receptor, significantly
improve negative symptoms (Goff et al, 1999, 1995;
Goff and Coyle 2001; Javitt et al, 1994). Taken together,
these data suggest that glutamate, specifically NMDA
receptor-mediated, transmission, may be disrupted in
schizophrenia.
Glutamate transmission involves myriad molecules,

including pre- and postsynaptic receptors and receptor-
associated intracellular molecules that link glutamate
receptors to signal transduction pathways. The NMDA
receptor is a ligand-gated ion channel formed by several
subunits, including the obligate NR1 subunit, and combina-
tions of NR2 subunits A–D (Hollmann and Heinemann,
1994). The NR3A and NR3B genes have also been identified,
but these subunits are primarily expressed in the brain
during development (Das et al, 1998), and in the spinal cord
(Chatterton et al, 2002), respectively. Over the last decade,
yeast two-hybrid experiments have identified several
glutamate receptor-interacting proteins enriched in the
postsynaptic density (PSD), which modulate receptor
activity and participate in signal transduction pathways.
PSD95, the prototype of this family, contains several
domains that bind the C-termini of NMDA NR2 subunits
in addition to cytoskeletal elements and signal transduction
enzymes. These protein–protein interactions facilitate
NMDA receptor function by clustering and anchoring the
receptor at the PSD, modulating NMDA receptor sensitivity
to glutamate, and, perhaps most importantly, assembling a
signaling complex to coordinate NMDA receptor-regulated
intracellular processes (Sheng, 2001; Sheng and Pak, 2000).
Considering the complexity of the glutamate system, it is
possible that glutamate dysfunction in schizophrenia may
not involve abnormalities of the NMDA receptor, but
instead may be due to a disruption of other molecules
involved in glutamate neurotransmission (Clinton et al,
2003).
We have recently reported glutamatergic abnormalities in

the thalamus of elderly patients with schizophrenia,
including decreased expression of NR1 subunit transcripts,

decreased binding to the polyamine and glycine sites of the
NMDA receptor (Ibrahim et al, 2000b), and increased
expression of PSD95-like molecules (Clinton et al, 2003).
These data support a hypothesis of glutamatergic dysfunc-
tion in the illness, and indicate that these abnormalities not
only involve receptors, but also glutamate receptor-related
signal transduction pathways. In the present study, we have
repeated these experiments in a second, younger cohort
from the Stanley Foundation Neuropathology Consortium,
which included patients with both schizophrenia and
affective disorders. We wanted to determine whether
glutamatergic abnormalities in the thalamus are present at
earlier ages in schizophrenia, and whether these abnorm-
alities occur in other psychiatric illnesses.

METHODS

A total of 60 subjects from the Stanley Foundation
Neuropathology Consortium were used in these studies.
This set consists of 15 patients with schizophrenia, 15
patients with major depressive disorder, 15 patients with
bipolar disorder, and 15 nonpsychiatrically ill individuals. A
detailed description of this collection has been published
(Torrey et al, 2000), and a summary of subject character-
istics is shown in Table 1. Cryostat sectioned (14 mm) slides
were provided to us and stored at –801C until use. Two
slides per subject were prepared for in situ hybridization for
each probe. Measurements were made after the subject code
was broken for analysis of earlier samples received by our
lab, so data analysis in this particular study was ‘unblinded’.

In situ Hybridization

Riboprobes were synthesized from linearized plasmid DNA
containing subclones of NMDA receptor subunits NR1,
NR2A-D, and NMDA-associated PSD proteins neurofila-
ment light-chain (NF-L), PSD95, and synapse-associated
protein 102 (SAP102), as previously described (Clinton and
Meador-Woodruff, 2002; Ibrahim et al, 2000b). Briefly,
100 mCi of [35S]UTP (New England Nuclear, Boston, MA)
was vacuum dried and 2.0 ml 5� transcription buffer, 1.0 ml
0.1 DTT, 1.0 ml each of 10mM ATP, CTP, and GTP, 2.0 ml
plasmid DNA, 0.5 ml RNAse inhibitor, and 1.5 ml SP6, T7, or
T3 RNA polymerase were added and incubated for 2 h at
371C. A measusre of 1 ml DNAse (RNAse free) was added to
the reaction and incubated for 15min at room temperature.
The labeled probe was purified using a Micro Bio-Spin P-30
Tris Spin Column (Bio-Rad Laboratories).

Table 1 Summary of Subject Characteristics

Schizophrenia Bipolar disorder Major depression Normal controls

N 15 15 15 15

Age (years) 44.2 (25–62) 42.3 (25–61) 46.4 (30–65) 48.1 (29–68)

Sex 9M, 6F 9M, 6F 9M, 6F 9M, 6F

PMI (h) 33.7 (12–61) 32.5 (13–62) 27.5 (7–47) 23.7 (8–42)

Tissue (pH) 6.1 (5.8–6.6) 6.2 (5.8–6.5) 6.2 (5.6–6.5) 6.3 (5.8–6.6)

Side of brain studied 6R, 9L 8R, 7L 6R, 9L 7R, 8L
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Two slides per subject were placed in 4% fomaldehyde at
room temperature for 1 h. The slides were then washed in
2� SSC (300mM NaCl/30mM sodium citrate, pH 7.2) three
times for 5min each. Next, the slides were placed in 0.1M
triethanolamine, pH 8.0/acetic anhydride, 400 : 1 (vol : vol),
on a stir plate for 10min. The final wash was in 2� SSC
buffer 5min, followed by dehydration through graded
ethanol washes and air-drying. A coverslip with 500 ml of
riboprobe (1 million cpm)/50% formamide buffer/0.01M
DTT was placed on each slide. Slides were placed in a
covered tray lined with filter paper saturated with 50%
formamide buffer and incubated at 551C overnight.
Approximately 18 h later coverslips were removed and the
slides in the NR1, NR2A-D, NF-L, and SAP102 studies were
washed in 2� SSC at room temperature for 10min, and
incubated in RNaseA (200mg/ml in 10mM Tris-HCl, pH
8.0/0.5M NaCl) at 371C for 30min. The slides then
underwent a series of washes: 2� SSC for 10min; 1�
SSC for 10min at room temperature; 0.5� SSC at 551C for
60min; and 0.5� SSC for 10min at room temperature. The
slides for the PSD95 studies required different washing
conditions. These slides were placed in 2� SSC at room
temperature for 15min, and then incubated in RNaseA
(200mg/ml in 10mM Tris-HCl, pH 8.0/0.5M NaCl) at 371C
for 30min. Then slides were washed twice in 2� SSC for
15min; once in 1� SSC for 15min at room temperature;
twice in 0.5� SSC at 551C for 60min each; and once in
0.5� SSC for 15min at room temperature. Finally, all of the
slides were dehydrated in graded ethanol washes, air-dried,
and apposed to film (Kodak Biomax MR-1, New England,
Nuclear, Boston, MA) for 5–60 days. For each probe, slides
from all subjects were processed together to eliminate
interassay variability.

Image and Data Analysis

Images were acquired from digitized X-ray films and
analyzed using Scion Image Beta 3b for PC. We identified
seven discrete thalamic nuclei in each section: anterior (A),
central medial (CM), dorsomedial (DM), ventral anterior
(VA), ventral lateral (VL), ventral medial (VM), and the
reticular nucleus (R). The nuclei were identified based on
cellular and white matter patterns defined by cresyl violet
staining of sections from each subject, as we have previously
described (Clinton et al, 2003; Ibrahim et al, 2000b). For all
experiments, tissue background values from adjacent white
matter were subtracted from grayscale values for each
nucleus and converted to optical density. The amount of
radioactivity bound (in nCi/g) was determined using
[14C]microscale standards (Amersham Biosciences, Piscat-
away, NJ) (Miller, 1991), which were exposed on the same
film as the slides for each study. The number of labeled
uridine nucleotides contained in each riboprobe and the
specific activity of the [35S]UTP were then used to convert
bound radioactivity to concentration of mRNA per nucleus,
expressed as fmol/g. For all studies, values for each nucleus
from two sections per subject were averaged and used for
statistical analysis, which was performed for each probe by
two-way analysis of variance (ANOVA), with nucleus and
diagnosis as independent variables, and mRNA concentra-
tions of each probe as the dependent variable. Post hoc
analyses were performed using the Neuman–Keuls test. The

Kolmogorov–Smirnov test was used to ensure normality of
all data. Pearson product moment correlations were used to
determine relationships between continuously distributed
variables. For all tests a¼ 0.05.

RESULTS

NMDA Subunit Expression in Schizophrenia and
Affective Disorders

Transcripts encoding the NMDA subunits NR1, NR2A-D
were present in all nuclei studied. They were, however,
predominately expressed in the dorsal thalamus, with very
low levels present in the reticular nucleus. NR1 transcripts
were abundantly expressed throughout the thalamus. NR2B
transcripts were also relatively abundant, with moderate
levels of NR2A, and low levels of NR2C and NR2D
transcripts (Figures 1 and 2). There was a main effect on
diagnosis for NR2B mRNA levels (F¼ 3.97, df¼ 3, 392;
p¼ 0.008) (Figure 2). Post hoc analysis showed that this
effect was due to a 30% increase of NR2B transcript
expression in the thalamus in schizophrenia. NR2B levels
were not significantly altered in either affective disorder
compared to controls (Figure 2). There was no main effect
on diagnosis for NMDA receptor subunits NR1, NR2A, and
2D, and there were no significant diagnosis� nucleus
interactions for any of the NMDA receptor subunits.
Correlational analysis showed that NMDA receptor subunit
transcript levels did not correlate significantly with age
(correlation coefficients ranged from –0.14 to 0.21,
p-values¼ 0.09–0.97). NR2C transcript levels were signifi-
cantly correlated with post-mortem interval (PMI) (r¼ 0.41,
p¼ 0.001). PMI for the schizophrenia group is significantly
higher than that of the control group, and our ANOVA for
NR2C showed a main effect for NR2C, suggesting that NR2C
expression was increased in the thalamus of patients with
schizophrenia; however, when we included PMI as a
covariate in a subsequent analysis, the effect of diagnosis

Figure 1 Transcript expression of NMDA receptor subunits NR1,
NR2A-D in the human thalamus. NR1 transcripts were heavily expressed
across the thalamus. There were also fairly high levels of NR2B transcripts,
moderate levels of NR2A, and very low levels of NR2C and NR2D
transcripts. In each section, the following nuclei were identified for each
subject: anterior (A); central medial (CM); dorsomedial (DM); ventral
anterior (VA); ventral lateral (VL); ventral medial (VM), and the reticular
nucleus (R). The tail of the caudate nucleus is also readily apparent at this
level.
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Figure 2 Expression of NMDA receptor subunit transcripts in the thalamus in schizophrenia, bipolar illness, and major depression. NMDA receptor
subunit transcripts were measured in seven thalamic nuclei: anterior (A); central medial (CM); dorsomedial (DM); ventral anterior (VA); ventral lateral (VL);
ventral medial (VM), and the reticular nucleus (R). Values are mean7SEM. *Main effect for diagnosis (po0.01) by two-way ANOVA. **Post hoc analysis
indicated that NR2B transcript expression was significantly increased in schizophrenia.
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on NR2C expression was no longer significant. None of the
other NMDA subunit transcripts (NR1, NR2A, NR2B,
NR2D) correlated with PMI (correlation coefficients ranged
from 0.03 to 0.11, p-values¼ 0.37–0.75). NR1 transcript
levels correlated with pH (r¼ 0.54, p¼ 0.000009), but the
other NMDA receptor subunit transcripts did not (correla-
tion coefficients ranged from 0.01 to 0.18, p-values¼ 0.27–
0.84). ANOVA analysis showed that pH levels were not
significantly different between diagnostic groups.

NMDA Receptor-Associated PSD Protein Transcripts
in Schizophrenia and Affective Disorders

NF-L, PSD95, and SAP102 transcripts were expressed in all
nuclei studied. NF-L transcripts were abundantly expressed
throughout the thalamus. PSD95 transcripts were also
abundant, and SAP102 transcripts were moderately ex-
pressed in the thalamus (Figures 3 and 4). There was a main
effect for diagnosis on NF-L transcript expression (F¼ 7.95,
df¼ 3,392; p¼ 0.00004). Post hoc analysis showed that this
effect was due to a 29% decrease of NF-L transcripts in the
thalamus of bipolar patients and a 19% decrease in
schizophrenia patients, while levels were unchanged in the
depression group (Figure 4). There was a main effect for
diagnosis on PSD95 mRNA expression (F¼ 4.27, df¼ 3,392;
p¼ 0.006), which was due to a 24 and 19% reduction of
transcripts in the thalamus of bipolar and schizophrenia
patients, respectively (Figure 4). There was also a main
effect for diagnosis on SAP102 transcript expression
(F¼ 5.08, df¼ 3,392; p¼ 0.002). Post hoc analysis indicated
that this effect was due to 29, 29, and 14% reductions of
SAP102 transcripts in bipolar disorder, schizophrenia, and
depression, respectively (Figure 4). There were no signifi-
cant diagnosis� nucleus interactions for any of the NMDA
receptor-associated PSD proteins. Correlational analysis
showed that PSD protein transcripts did not correlate
significantly with either age (correlation coefficients ranged
from –0.05 to 0.04, p-values¼ 0.36–0.69) or PMI (cor-
relation coefficients ranged from –0.19 to –0.07,
p-values¼ 0.13–0.55). All of the PSD protein transcripts
did, however, correlate with pH: NF-L (r¼ 0.39, p¼ 0.002),
PSD95 (r¼ 0.44, p¼ 0.0004), and SAP102 (r¼ 0.41,
p¼ 0.001). In general, pH levels are known to influence
mRNA quality and stability, and our results are consistent
with this notion since the expression of some transcripts is
positively correlated with pH. As mentioned above, ANOVA
analysis showed that pH levels were not significantly
different between diagnostic groups.

DISCUSSION

We have previously reported abnormalities of NMDA
receptors and associated intracellular proteins in the
thalamus of elderly patients with schizophrenia (Clinton
et al, 2003; Ibrahim et al, 2000b). In the present studies we
have again observed changes in the expression of some
NMDA receptor subunits and associated PSD proteins in
schizophrenia in a younger cohort of patients; however, the
pattern of changes differs from our findings in elderly
patients. We also found evidence of glutamatergic abnor-
malities in the thalamus in affective disorders, particularly
in bipolar disorder.

Glutamatergic Abnormalities in the Thalamus
in Schizophrenia

Several post-mortem studies from our laboratory suggest
glutamatergic dysfunction in the thalamus of elderly
patients with schizophrenia (Clinton et al, 2003; Ibrahim
et al, 2000b; Smith et al, 2001b). We reported reduced
expression of NMDA receptor subunit transcripts NR1 and
NR2C, and decreased binding at the polyamine and glycine
binding sites of the NMDA receptor complex, but did not
find prominent changes in the expression of AMPA,
kainate, or metabotropic receptors (Ibrahim et al, 2000b;
Richardson-Burns et al, 2000). We subsequently reported a
significant increase in the transcript expression of three
NMDA receptor-associated PSD proteins, NF-L, PSD95, and
SAP102; since these molecules are generally thought to
promote NMDA receptor function, the expression of these
molecules may be elevated in an attempt to compensate for
decreased NMDA receptor expression, or in response to a
general deficit in thalamic glutamate neurotransmission
(Clinton et al, 2003). We have also identified abnormalities
of presynaptic vesicular glutamate transporters, which
package glutamate for release, and glial-associated excita-
tory amino transporters that are responsible for removing
glutamate from the synaptic cleft, in the thalamus in
schizophrenia (Smith et al, 2001a, b). Together these data
suggest that glutamate neurotransmission is disturbed in
the thalamus in schizophrenia, which may be associated
with the structural and metabolic thalamic abnormalities
previously reported in the illness (Andreasen, 1997; Jones,
1997).
In the present study, we observed a significant increase of

NMDA NR2B subunit transcripts, and decreased NF-L,
PSD95 and SAP102 transcripts in the thalamus of younger
patients with schizophrenia (mean patient age 43 years).
These data conflict with our previous work, which reported
decreased NMDA NR1 and NR2C transcipts, and increased
NF-L and SAP102 transcripts in a substantially older group
of patients (mean patient age of 70 years) (Clinton et al,
2003; Ibrahim et al, 2000b). One possible explanation of
these contradictory results could be that different stages of
the disease are associated with divergent neurochemical
changes. The pattern of gene expression for neurotrans-
mitter receptors and associated molecules may vary
depending upon the age of a patient, the types of symptoms
(ie positive psychotic symptoms, deficit symptoms, or the
extent of cognitive impairment) that predominated, or the
length of time that the person suffered from the illness. Data

Figure 3 Transcript expression of NMDA receptor-associated PSD
proteins NF-L, PSD95, and SAP102 in the human thalamus. NF-L
transcripts were abundantly expressed throughout the thalamus. PSD95
transcripts were also heavily expressed in the thalamus, with moderate
levels of SAP102 transcripts expression.
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from these studies suggest that glutamate neurotransmis-
sion is altered both at mid-life and later stages of
schizophrenia. It remains unclear, though, whether NMDA
receptor-related abnormalities represent a primary problem
that interferes with normal thalamic function and con-
tributes to symptoms present during mid-course and late
stages of schizophrenia, or if these molecular abnormalities
occur secondarily to structural or functional thalamic
pathology known to exist in the illness.
NMDA receptors are comprised of at least one NR1

subunit, and a combination of NR2 subunits (A–D). The
NR2 subunits are differentially expressed in the brain, and

each subtype conveys distinct functional properties to the
assembled receptor complex. For instance, the inclusion of
different NR2 subunits in vitro can modulate current
amplitudes as well as sensitivity to agonists (like glutamate),
co-agonists (such as glycine), and NMDA channel blockers,
like Mg2þ (Hollmann and Heinemann, 1994). NMDA NR2B
subunits are moderately expressed throughout the brain,
and in agreement with previous studies, we found moderate
levels of NR2B expressed in the thalamus (Ibrahim et al,
2000a, b; Jones et al, 1998). We also detected a significant
increase of NR2B transcripts in the thalamus in schizo-
phrenia, which may be functionally significant. Studies

Figure 4 Expression of NMDA receptor subunit transcripts in the thalamus in schizophrenia, bipolar illness, and major depression. NMDA receptor
subunit transcripts were measured in seven thalamic nuclei: anterior (A); central medial (CM); dorsomedial (DM); ventral anterior (VA); ventral lateral (VL);
ventral medial (VM), and the reticular nucleus (R). Values are mean7SEM. *Main effect for diagnosis (po0.01) by two-way ANOVA. **Post hoc analysis
indicated that NF-L and PSD95 expression was significantly reduced in schizophrenia and bipolar illness. SAP102 transcripts were significantly reduced in all
three illnesses.
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show that subunit stoichiometry is influenced by neural
activity (Audinat et al, 1994), so if glutamate transmission is
impaired in the thalamus in schizophrenia, it may lead to
increased expression and incorporation of NR2B subunits
into existing receptors.
Besides subunit composition, NMDA receptor function is

also regulated by interactions between the NMDA subunit
C-termini and intracellular scaffolding proteins like PSD95,
which serve myriad functions, including targeting the
receptors to the synaptic membrane, modulating receptor
activity, and coupling receptor activation to intracellular
signaling pathways. Furthermore, PSD95-like proteins may
physically link NMDA receptors to other effector systems in
order to integrate information from multiple neurotrans-
mitter receptors (Sheng and Pak, 2000). In the present
study, we found reduced expression of PSD95 and SAP102,
which are associated with NMDA NR2 subunits. Decreased
expression of these proteins may contribute to a breakdown
of glutamate receptor-related intracellular signaling. We
also observed decreased expression of NF-L, which has been
shown to interact with the NMDA NR1 subunit (Ehlers et al,
1998) and protein phosphatase-1 (PP1), a major protein/
serine/threonine phosphatase that is involved in numerous
intracellular processes (Shenolikar, 1994). NF-L may be
important for linking NMDA receptors to the synaptic
cytoskeleton (Ehlers et al, 1998, 1995) and may influence
NMDA receptor signaling by anchoring PP1 at the PSD
where it can dephosphorylate various PSD proteins, such as
NMDA receptor subunits, or CamKII (Terry-Lorenzo et al,
2000). Although NF-L may participate in or affect NMDA
receptor function, its principle function in the neuron is to
interact with the other neurofilament subunits (NF-medium
and NF-heavy chain) to maintain the neuronal cytoskeleton
(Shaw, 1991). Therefore, while reduced NF-L transcript
expression may be related to alterations of glutamate and/or
NMDA receptor transmission in the thalamus in schizo-
phrenia, it could also be associated with cytoskeletal
changes due to thalamic structural pathology in the illness.

Glutamate Abnormalities and Thalamic Dysfunction in
Affective Disorders

The thalamus is a critical link in the corticolimbic circuitry
that regulates mood and various cognitive processes,
including attention, which can be impaired not only in
schizophrenia (Andreasen, 1997), but also in bipolar
disorder (Denicoff et al, 1999; Sax et al, 1999) and major
depression (Mialet et al, 1996). While there is considerable
evidence of thalamic dysfunction in the pathophysiology of
schizophrenia, functional or anatomical abnormalities in
the thalamus in affective disorders is controversial. A case
report in the early 1980s found right thalamic infarction to
be associated with secondary mania, suggesting possible
thalamic dysfunction in bipolar illness (Bogousslavsky et al,
1988; Cummings and Mendez, 1984). More recent in vivo
imaging studies in patients with affective disorder have
rendered mixed results. Some studies reported increased
thalamic density (Dewan et al, 1988) and volume (Dupont
et al, 1995; Strakowski et al, 1999) in bipolar patients, but
other work has found that thalamic volume is either
unchanged (Dolan et al, 1990; Krishnan et al, 1991, 1993;
Sax et al, 1999; Strakowski et al, 1993) or even decreased

(Dasari et al, 1999; Dupont et al, 1995) in bipolar and
unipolar depression.
Despite controversial data on possible structural or

anatomical abnormalities of the thalamus in bipolar
disorder and major depression, there are studies that
suggest functional, and possibly neurochemical abnormal-
ities in the thalamus, particularly in bipolar illness.
Abnormal blood flow and metabolism have been noted in
the medial thalamus in bipolar depression (Buchsbaum et al,
1997; Drevets et al, 1995), and increased levels of creatine
were found in the thalamus, which may be related to altered
cellular energy metabolism (Deicken et al, 2001). Our data
suggest that glutamate neurotransmission may be abnormal
in the thalamus of bipolar patients, since we found
decreased expression of all three associated PSD proteins
examined, NF-L, PSD95, and SAP102. Reduced NF-L
transcript expression could be related to thalamic structural
pathology in bipolar patients (Soares and Mann, 1997), or
may impair NMDA receptor function, as discussed pre-
viously. Further, decreased expression of PSD95 and
SAP102 in bipolar illness, and decreased SAP102 levels in
major depression, may represent a disruption of NMDA
receptor-associated signaling and/or the integration of
NMDA receptor signals with information from other
receptor systems. An earlier study found reduced [3H]cyclic
AMP (cAMP) dependent protein kinase binding in cytosolic
fractions from the thalamus of bipolar patients, which lends
support to the possibility of disrupted intracellular signaling
in the thalamus in bipolar illness (Rahman et al, 1997).

Limitations of This Study

Several limitations need to be considered in interpreting
data from these studies. First, an important limitation of
this and all post-mortem studies in psychiatric illness is the
possible confounding effect of psychotropic medications,
since these drugs potentially regulate the neurochemical
systems under study. The majority of patients with
schizophrenia and several of the bipolar patients from this
study were exposed to neuroleptics at some point in life
(Torrey et al, 2000). Antipsychotic medications can
modulate thalamic metabolism and immediate early gene
expression (Cohen and Wan, 1996; Deutch et al, 1995;
Holcomb et al, 1996). They do not, however, appear to affect
thalamic NMDA receptor expression (Ulas et al, 1993).
Currently no studies have directly examined the effect of
neuroleptics on the expression of NMDA receptor-asso-
ciated PSD molecules. However, Dracheva et al (2001)
reported altered PSD95 and NMDA receptor subunit
expression in the prefrontal and occipital corticies in
schizophrenia, and found that these transcripts did not
differ between patients that were taking antipsychotic
medication within 6 weeks of death and those that were
medication-free for greater than 6 weeks. Even less is known
about the effect of antidepressants and mood stabilizers on
the expression of NMDA receptors and associated intracel-
lular molecules. One study showed that antidepressant
agents reduce transcript expression for some NMDA
receptor subunits in the thalamus, cortex, cerebellum, and
striatum of mouse (Boyer et al, 1998). While other work
indicates that mood stabilizers like lithium can influence
NMDA receptor function (Chuang et al, 2002; Hashimoto
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et al, 2002), no studies to date have examined the effect of
these agents on the expression of glutamate receptors.

Conclusions

Several lines of evidence support a hypothesis of glutama-
tergic dysfunction in schizophrenia, including our recent
reports of altered NMDA receptor subunit and PSD protein
transcript expression in the thalamus in schizophrenia
(Clinton et al, 2003; Ibrahim et al, 2000b). In the present
experiments using a younger patient cohort, although the
pattern of changes differs, we have again found evidence of
perturbed glutamate neurotransmission in the thalamus in
schizophrenia. Further, our data suggest that thalamic
glutamate abnormalities may also occur in bipolar disorder.
Interestingly, one of the most consistent findings across
diagnostic groups was an abnormality of intracellular
signaling molecules that are linked to the NMDA receptor,
rather than overt changes in the receptor subunits
themselves. PSD95 and similar proteins link the NMDA
receptor to intracellular enzymes that mediate signaling.
Moreover, these molecules may also provide a physical link
between different neurotransmitter systems to coordinate
and integrate information from multiple effector systems
(Sheng and Pak, 2000). Abnormalities of PSD95-like
molecules and other intracellular signaling machinery may
contribute to dysregulated communication between multi-
ple neurotransmitter systems (such as glutamatergic and
dopaminergic systems) that are potentially involved in the
neurobiology of schizophrenia and affective disorders.
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