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The selective ability of antipsychotic drugs (APDs) to attenuate conditioned avoidance responding (CAR) has been recognized for over

50 years. However, most efforts to account for this finding have been either neurochemically oriented (focusing on the neuromodulator

dopamine) or behavioral, with little effort invested in uniting the two within a computational model. In this paper we propose a

computational model, based on concepts from formal reinforcement learning theory, which accounts for the basic finding that

noncataleptic doses of APDs disrupt avoidance without disrupting escape. The model formally separates out sensory, motor, and reward

processes, and makes novel predictions pertaining to the dose- and time-dependent effects of APDs on response latenciesFpredictions

which we verified in experimental studies using four different APDs (haloperidol, chlorpromazine, risperidone, and clozapine). The APD

action in this model is most consistent with an effect on ‘expected future reward’Fan idea closely linked to motivational drives and

consistent with several leading theories of dopamine action.
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INTRODUCTION

Conditioned avoidance response (CAR) is one of most
important preclinical animal models in the study of
antipsychotic drugs (APDs) (Kilts, 2001; Wadenberg and
Hicks, 1999). In a typical CAR experiment, a rat is placed in
a two-compartment shuttle box and presented with a
neutral conditioned stimulus (CS) such as a light or tone,
followed after a short delay by an aversive unconditioned
stimulus (US), such as a foot-shock. The animal may escape
the US when it arrives by running from one compartment to
the other. However, after several presentations of the CS–US
pair, the animal typically runs during the CS and before the
onset of the US, thereby avoiding the US altogether.
Animals treated with low (noncataleptic) doses of APDs
fail to perform avoidance responses to the CS, even though
their escape response to the shock itself is relatively
unaffected (Ader and Clink, 1957; Arnt, 1982; Cook and
Catania, 1964; Cook and Weidley, 1957; Courvoisier, 1956;
Davidson and Weidley, 1976; Ponsluns, 1962). This selective

disruption of avoidance is characteristic of all APDs, but
neither anxiolytics nor antidepressants show this effect
(Courvoisier, 1956; Morpurgo, 1965; Reynolds and Czudek,
1995). Furthermore, the ability of an APD to suppress CAR
has been shown to be closely correlated with its clinical
potency (with respect to its treatment of psychosis) (Arnt,
1982; Janssen et al, 1965). Therefore, suppression of
avoidance in CAR is correlated with the specific anti-
psychotic action of APDs.
From a neurochemical perspective, it has been established

that the blockade of the dopamine D2 receptor is strongly
implicated APD-induced disruption of avoidance (Waden-
berg et al, 2000, 2001). However, despite the fact that CAR
has been used to study APDs for nearly 50 years, no
consensus has been reached regarding the underlying
behavioral or psychological processes. Early work proposed
a role for APDs in inhibiting internal ‘fear’ or ‘anxiety’
(Cook and Weidley, 1957; Davis et al, 1961; Hunt, 1956;
Miller et al, 1957). Later work shifted the focus to the motor
impairment effect of APDs (Beninger et al, 1980a, b; Cook
and Catania, 1964; Fibiger et al, 1976; Grilly et al, 1984;
Morpurgo, 1965; Ponsluns, 1962), and indeed the currently
dominant explanation of APD-induced avoidance deficits is
still the ‘motor initiation’ hypothesis (Aguilar et al, 2000;
Ogren and Archer, 1994). Other suggestions have included
an APD-induced reduction in responsiveness to external
stimuli (Dews and Morse, 1961), a decrease in sensory
afferent stimulation (Irwin, 1958; Key, 1961), a loss of
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attention or arousal (Low et al, 1966), and a decrease in
incentive motivation (Beninger, 1989).
In this paper, we attempt to understand the role of APDs

in CAR by presenting a simple computational model. Our
model not only simulates the selective, dose-dependent
effects of ADPs on avoidance but also makes a number of
novel predictions pertaining to the effect of APDs on
avoidance latency. These predictions are tested and verified
using experimental studies.

THE MODEL

The model is based upon the assumption that during
conditioning an animal builds an explicit internal model of
its environment as suggested in Figure 1. Although the types
of representations used by animals are many and varied
(Balleine et al, 1995; Berridge and Robinson, 1998; Cardinal
et al, 2002; Dickinson, 1980), the evidence that animals
internally represent action-outcome relationships (among
others) is compelling (Balleine et al, 1995; Cardinal et al,
2002; Dickinson, 1980, 1987; Dickinson et al, 1983). These
representations form the basis of our model. In Figure 1, the
inclusion of intermediate ‘wait’ states between the CS and
the US allows for an abstract representation of the passage
of time. The fact that animals are able to represent time as
part of the conditioning process, and also that dopamine
modulation interacts with this representation is suggested
by studies such as Richards et al (1999) and Wade et al
(2000).
We will use these representational conveniences to

capture two important features of dopamine manipulation.
Firstly, dopamine manipulation can apparently affect the
expression of behaviors independently of their acquisition.
For example (Cousins et al, 1996), trained rats in a T-maze
in which the two arms of the maze contained different
amounts of food. The arm containing the greater quantity of
food was obstructed by a wall, yet was normally preferred
by rats because of the larger payoff. Dopamine blockade
administered after training produced a switch in preference
from one arm to the other. Other examples of dopamine
manipulations affecting the expression of previously
acquired behaviors are found in Berridge and Robinson
(1998), Cousins et al (1996), Dickinson et al (2000), Fowler
et al (1986), Grilly et al (1984), Heyden and Bradford (1988),
Maffii (1959), Rolls et al (1974), Salamone et al (1991, 1993)

and Wadenberg et al, 2001). Secondly, dopamine manipula-
tion appears to influence behavior differently depending on
that behavior’s temporal/instrumental relationship to the
outcome. The T-maze experiment of Cousins et al (1996) is
also a good example of this phenomena. The differential
effect of APDs on primary vs secondary conditioned
avoidance (Maffii, 1959) is another good example which
we consider shortly. Other examples are found in Heyden
and Bradford (1988), Richards et al (1999), Rolls et al
(1974), Salamone et al (1991, 1994) and Wade et al (2000).
Although abstract, the model still bears some similarity to

neurophysiological reality. For example, the states can be
interpreted as abstract neurons or ensembles of neurons
and the transitions between states as connections between
neurons. The effects of dopamine will be simulated by
temporarily modulating the strength of those connections
as activation is passed from one state to another. This builds
on previous suggestions that dopamine acts as a gain
modulator of expressed behavior (Braver et al, 1995;
Servan-Schreiber and Blackburn, 1995; Servan-Schreiber
et al, 1990).
Assuming that an internal model of the task has been

constructed as in Figure 1, it can be used to motivate
behavior in the following way. Let us say, for example, that a
hypothetical rat is presented with the CS. The ‘CS’ state in
the model is then given an activation of 1 in order to
represent this fact. We write this: A(CS)¼ 1, where A is
called the activation function. The model can now be used
to generate the expected future reward associated with each
of the two available actions (Run and Do Nothing) by
hypothetically playing through the consequences of those
actions. In the case of evaluating the ‘Run’ action, this
involves propagating the activation, A(CS), to the ‘Safety’
state. The amount of activation that actually reaches the
‘Safety’ state is directly proportional to the strength of the
transition connection between the ‘CS’ state and the ‘Safety’
state. We write the strength of this connection, T(CS, Run),
where T is called the transition function. Now, the
activation of the ‘Safety’ state can be written as

AðSafetyÞ ¼ AðCSÞ�TðCS;RunÞ ð1Þ
The idea is that T(CS, Run) reflects the probability of

‘Safety’ indeed being the consequence of taking the ‘Run’
action when presented with the ‘CS’. For our purposes, all
transition connections have a value of 1, but the model can
be generalized to partial reinforcement schedules. Now we

Figure 1 We propose that an animal builds an internal model of its environment, through trial and error interaction with the CAR task. Such a model
comprises three core components: states, rewards, and transitions. The circles represent states that the animal can be in, the number inside each state
represents the amount of reward (or in this case punishment) received in that state, and the arrows denote the consequence of taking each action (bottom
left) in each state. These arrows represent the transition function, which is modulated (or gated) by dopamine (see vertical bars). The wait states are internal
states for which there is no external cue, and allow the model to represent the delay between CS onset and the shock. The ‘Safety’ state is a terminal state at
which the trial is ended. Following formal reinforcement learning methods we interpret punishment as negative reward.

A model of antipsychotic action in conditioned avoidance
A Smith et al

1041

Neuropsychopharmacology



propose a role for dopamine in modulating the efficacy of
these transition connections. This is easily achieved by
replacing equation (1) with

AðSafetyÞ ¼ AðCSÞ�TðCS;RunÞ�D ð2Þ
where D represents the global availability of dopamine. We
assume that normal levels of dopamine receptor occupancy
are represented by setting D¼ 1, and complete dopamine
blockade by setting D¼ 0.
Since the ‘Safety’ state marks the end of the trial, the total

expected future reward of taking the ‘Run’ action when in
the ‘CS’ state can be calculated as

Future RewardðCS;RunÞ ¼ AðSafetyÞ�rewardðSafetyÞ ð3Þ
where reward(Safety) is the value inside the ‘Safety’ state in
Figure 1. The idea is that the consequences of taking an
action in a state can be calculated by hypothetically
traversing an internal representation of the environment,
and that this process is achieved by propagating activation
from one abstract neural representation to another. In the
case of evaluating the ‘Run’ action in the ‘CS’ state, this can
be achieved by first applying equation (2), and then
applying equation (3). The result is simply that
Future_Reward (CS, Run)¼ 1� 1� 1� 0¼ 0.
A similar process can be performed to calculate the

expected future reward of doing nothing in the ‘CS’ state.
This time, the activation has to be propagated through the
two wait states. First we calculate the activation of ‘Wait 1’:

AðWait 1Þ ¼ AðCSÞ�TðCS;Do nothingÞ�D ð4Þ
Then this activation is propagated to ‘Wait 2’:

AðWait 2Þ ¼ AðWait 1Þ�TðWait 1;Do nothingÞ�D ð5Þ
And finally, to the ‘US’ state:

AðUSÞ ¼ AðWait 2Þ�TðWait 2;Do nothingÞ�D ð6Þ
Then, in a similar manner to equation (3), the expected
future reward of taking the ‘Do Nothing’ action when in the
‘CS’ state can be calculated by

Future RewardðCS;Do NothingÞ
¼ AðUSÞ�rewardðUSÞ ð7Þ

The result is that Future_Reward(CS, Do Nothing)¼
1� 1� 1� 1� 1� 1� 1��1¼�1. All the 1 s represent the
cumulative effect of the appropriate transition connections,
along with their modulation by D, as activation is
propagated through the internal model. By comparing the
results of equation (3) with equation (7), the action with the
highest expected future reward can then be selected for
execution. Expected future reward is the central component
of all formal reinforcement learning techniques1 because of
its pivotal role in action selection (Sutton and Barto, 1998).
This value is a natural analogy of motivation in animals (see
(McClure et al, 2003) for example) providing we assume

that animals are motivated to achieve future reward, and
avoid future punishment.
Once an action has been selected, a new state in the model

will be activated to reflect the change in the animal’s
environment as a result of that action. If the hypothetical
animal receives a shock, then the ‘US’ state will be activated.
At this point, the model is faced with another choice, and
the whole process can be repeated, but this time with
activation originating in the ‘US’ state and passing to all its
subsequent states. In the case of the ‘US’ state, the only
subsequent states are the ‘US’ itself and the ‘Safety’ state
(depending on which action is being evaluated). The
proximity of these states (in terms of the single transition
required to get to them) will make the expected future
reward associated with the ‘US’ more robust to APD-
induced devaluation.

MODELING THE BASIC FUNCTION OF APDS IN CAR:
DIFFERENTIAL EFFECTS ON PRIMARY AVOIDANCE,
SECONDARY AVOIDANCE, AND ESCAPE

The most reliable finding pertaining to APDs in CAR is their
ability to selectively disrupt the avoidance response. As an
exemplar of this finding, we consider data from one of the
earliest CAR studies (Maffii, 1959) (reviewed along with
other classic APD studies in Dews and Morse, 1961).
Maffii’s training procedure consisted of presenting rats with
a tone followed by a shock, where the appropriate avoidance
response involved jumping out of the conditioning box onto
a pole. However, not only did the rats learn to jump onto
the pole in response to the tone, but after sufficient training
they jumped onto the pole as soon as they were placed in
the box, and before the tone was even presented. He termed
this the secondary conditioned response (elicited by the
environmental cue of the box itself), and climbing on the
pole in response to the tone the primary avoidance
response. The escape response refers to the rat climbing
onto the pole when presented directly with the shock itself.
When orally administered with various doses of chlorpro-
mazine, dose-dependent decreases in the primary, second-
ary and escape responses were all observed. However, Maffii
found that the doses required to disrupt secondary
avoidance were significantly lower than those required to
disrupt primary avoidance, which in turn were significantly
lower than those required to disrupt escape response (see
Figure 3 left).
Figure 2 shows two alternatives for the way in which an

animal might internally represent this task. In one case the
secondary stimulus (the environmental box cues) enters
into a direct relationship with the shock, while in the other
case the relationship is only indirect. In either case, the
model suggests that the escape response is less susceptible
to dopamine blockade than the primary avoidance
response, and that the primary avoidance response is itself
less susceptible to dopamine blockade than the secondary
avoidance response. This is due to the increasing distance of
the respective CS from the shock itself in the internal
representation. For example, in order to evaluate the
consequence of the ‘Do Nothing’ action in the ‘Environ-
mental Cue’ state, activity must be passed over four
(dopamine modulated) transition connections, while the

1Such techniques are used to train machines through an artificial analogy

of animal reinforcement learning. See Sutton and Barto (1998) for the
definitive review, and Crites and Barto (1996), Mahadevan and Connell

(1991) and Tesauro (1992, 1994) for celebrated applications (including

training a computer to play backgammon at the highest human level, the

solution of a complex elevator scheduling problem, and a robot learning
application.
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consequences of ‘Do Nothing’ in the ‘auditory stimulus’ and
‘shock’ states can be generated using only two transitions or
one transition (respectively). Figure 3 demonstrates that by

assuming a typically shaped relationship between drug dose
and dopamine receptor blockade, the model’s predictions
capture the qualitative nature of Maffii’s results.

NOVEL RESPONSE LATENCY PREDICTIONS UNDER
APDS

We have suggested a simple computational model that, by
maintaining an internal representation of its environment,
is able to account for the basic CAR result that APDs disrupt
avoidance before escape. To do this, we used the abstract
notion of internal delay states to represent the temporal
relationship between the CS and US. However, the model
was only given the opportunity to produce an action in the
externally activated statesFthat is, ‘CS’ and ‘US’. A natural
question arises as to how the model would perform if
allowed to produce a response in any state, including the
internal delay states.
To answer this question, we consider a slightly more

complex, but generalized version of the basic model of
Figure 1 in which we assume a distinct delay state for each
second of time between the CS and US (10 s being a typical
CS duration). Furthermore, we allow the model to make an
action selection at each of these internally measured
intervals (see Figure 4). The number of delay states used
to represent the CS–US interval is arbitrary, and the
qualitative nature of the results presented below could be
achieved with a range of such states. The same mechanism
as before is used for generating the expected future reward
of each behavior in each state, except that now this value is
interpreted as the probability of acting in that state. For
example, if D¼ 1 and all the transition connections are
equal to 1, then the expected future reward associated with
‘Do Nothing’ in any state will be �1, and the model will

Figure 2 Two alternative suggestions for an animal’s approach to
modeling the conditioning experiment of Maffii (1959). (Top) The
secondary CS (environment cues) enters into a relationship with the US
(shock) via the primary CS (auditory stimulus). (Bottom) The secondary
stimulus enters into a direct relationship with the US. We show both to
demonstrate that the qualitative performance of the model is not sensitive
to the finer arguments regarding the animal’s perception of cause and
effect. Also, the proposed role for dopamine is not linked to any particular
model, but rather to a general process that acts on a task-specific
representation. Arguments pertaining to the appropriateness of a specific
representation (i.e. top or bottom) can be separated from those pertaining
to the proposed dopaminergic process itself.

Figure 3 (Left) Number of secondary avoidance responses (climbing pole on being placed in cage before the onset of the tone), primary avoidance
responses (climbing pole on presentation of the tone), and escape responses (climbing pole on shock) under increasing doses of chlorpromazine, as a
percentage of the number of responses without the drug. Adapted from Maffii (1959). (Right) The qualitative nature of Maffii’s results can be captured by the
model. Expected future reward is calculated from the three important states: ‘environment cue’ (solid line), ‘auditory stimulus’ (dashed line), and ‘shock’
(dotted), under the ‘Do Nothing’ action, for decreasing values of D. This gives us a measure of the incentive salience of the relevant stimulus, and therefore
also of the motivation to act. Although the relationship between D and the ‘simulated dose’ was hand picked to best fit the data, this relationship was fixed
across the three curves and assumed the shape of a typical antipsychotic dose/D2 receptor occupancy curve. Since D is an abstract representation of
dopamine, and the model does not attempt to address the underlying neurochemical processes, it is important to emphasize that it is the qualitative but not
the quantitative performance of the model that is of interest. The horizontal line suggests an example escape cost. The model could be made to abolish a
particular response when the respective curve falls below this threshold, capturing the ubiquitous experimental finding that avoidance is disrupted before
escape.

A model of antipsychotic action in conditioned avoidance
A Smith et al

1043

Neuropsychopharmacology



therefore choose to ‘Run’ with probability¼ 1. If the
expected future reward is only �0.5 (because Do1 for
example), then the model will escape with probability 0.5,
etc. Thus, expected future reward is now being used as a
probabilistic interpretation of motivation.
We make one additional assumption. If the ‘CS’ state is

current (onset of the CS has just occurred), but the expected
future reward associated with doing nothing is close to zero
(ie Future_Reward(‘CS’,‘Do Nothing’)E0, perhaps because
Do1), then the CS is simply ignored. Furthermore, the CS is
ignored with increasing probability as this value becomes
closer to zero. The consequence of ignoring the CS is that
the model will not activate the internal delay states and will
remain dormant until the external stimulus of the shock
itself arrives. In this instance, expected future reward is
being interpreted as salience, and the intuitive principle is
being invoked that if a stimulus is perceived as nonsalient,
then there is no need to waste resources keeping track of the
time since its onset. This assumption will allow the model to
use the dotted line from Figure 3 (right) to produce a
smooth shift from avoidance to escape under increasing
levels of dopamine blockade.
This generalized model allows us to predict the detailed

effect of APDs on the pattern of both avoidance and escape,
particularly with respect to response latencies (Figure 5).
For example, when D¼ 1, the model escapes in the first
second of the trial with probability 1 (an unnatural state of
affairs). As dopamine is reduced, three effects are observed.

Firstly, a smooth transition from avoidance (1–10 s, before
US onset) to escape (10–30 s, after US onset) is observed.
Secondly, and most significantly, the peak latency to
produce an avoidance response (if one is produced at all)
increases. This is particularly pronounced for D¼ 0.75 and
0.7. Thirdly, irrespective of the dopamine level, the peak
latency to escape while being shocked always occurs on the
first second of the shock (ignoring the escape failure effect
at 30 s). Hence, the model not only predicts an increase in
the mean latency of both avoidance and escape (a standard
finding), but more specifically it predicts a detailed change
in the pattern of the two responses. Our model suggests that
the difference in pattern between avoidance and escape is
due to the interaction of APD induced dopamine blockade
with the internal delay states.

Predicting Dose-Dependent Effects of APDs on
Avoidance and Escape Response Latencies

We were unable to find any detailed published experimental
data on the response latencies of APD-treated animals since
most studies traditionally report only avoidance percen-
tages or mean avoidance latencies. While our group has
previously published several CAR experiments, we had also
adhered to this tradition, and had not evaluated the data
specifically for response latencies. Therefore, in order to test
the novel predictions of the model, we reanalyzed
previously collected behavioral data. Although these data

Figure 4 A generalized version of the model of Figure 1. We now assume that a distinct delay state is perceived for each second that elapses between the
onset of the CS and the arrival of the US. Furthermore, the model is able to choose whether or not to act in each of these internal states. At any point during
the simulation, one of the states is the current state. The onset of the tone makes the ‘CS’ state current, the presence of the shock makes the ‘US’ state
current, and in the absence of either of these conditions the appropriate internal delay state (D1–D9) becomes current. For any current state, the expected
future reward of either behavior (‘Run’ or ‘Do Nothing’) can be calculated using the method described previously. We include an additional delay state
between the shock and itself in order to make a better quantitative account of the experimental data considered below.

Figure 5 The performance of the model (with all transition connections¼ 1) under decreasing levels of dopamine (left to right). The CS onset occurs at
the far left of each figure (0 s), and the vertical line denotes the onset of the shock (10 s). The trial is ended after a maximum of 30 s (20 s of shock). Each
figure shows the probability of the model producing the ‘Run’ action during each 1 s interval for the 30 s of the trial. This value is determined for each second
by first calculating the expected future reward associated with doing nothing in the current state (yielding the probability of producing the ‘Run’ response in
this state), and then by multiplying this value by the probability of not having produced the ‘Run’ response in any of the previous intervals. The result is that
the areas under the graphs sum to one, and each figure can be interpreted as a normalized frequency graph (with one second bins). Note that when D¼ 1,
all the responses occur in the first second. Note also that the 30-s bin is used to catch all ‘would be’ responses from 30 s onwards (simulating escape failures
caused by trial termination at 30 s in the experiment).
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were collected for a different study (currently unpublished),
the experimental method was the same as that used in a
previous study (Wadenberg et al, 2001), with the exception
of some minor procedural differences (intertrial interval,
number of training trials, etc). These discrepancies would
not be expected to affect the qualitative nature of the results.
A summary of these methods is provided below. Four
different drugs were used: a typical antipsychotic that is
specific in its dopamine blockade (haloperidol), a typical
antipsychotic that blocks several neurochemical systems
including dopamine, serotonin, and the adrenergic system
(chlorpromazine), and two atypical antipsychotics (risper-
idone and clozapine), where the latter is known not to
induce either catalepsy or extrapyramidal side effects. For
each drug, three different doses were usedFthese doses
were chosen on the basis of previous experience to provide
a range of actions on avoidance/escape/failure indices.
For each drug tested, 20 naive Sprage–Dawley rats were

trained (drug free) over 4 days (40 trials per day) in a two-
way avoidance paradigm. At this point, between seven and
10 animals had reached an 80% avoidance criterion and
were selected for subsequent APD testing under various
doses which were administered subcutaneously. Each trial
(during both training and APD-testing) consisted of the
presentation of a white noise for 10 s, followed immediately
by a continuous scrambled foot-shock for up to 20 s. If a rat
changed compartments during the white noise then no
shock was administered and an avoidance response was
recorded. If the animal changed compartments during the
shock then the shock was terminated and an escape
response recorded.
Recall that the main prediction from Figure 5 is that there

should be a dose-dependent effect of APDs on peak latency
to avoid, but not on peak latency to escape. These
predictions are qualitatively validated by the comparison
between model performance and experimental data shown
in Figure 6. Not only does increasing APD dose increase the
peak avoidance latency, but even under high doses, where
avoidance is abolished and escape itself is significantly
affected, the peak latency to escape (10–30 s) still occurs
during the first few seconds following shock onset. This
helps to rule out the explanation that the increase in
avoidance latency is caused by a drug-induced fixed
motoric cost.

Predicting the Time Course of APD Effects on Latency

The model also predicts that as APDs take effect, there will
be a shift from left to right along Figure 5Fan effect that
will be smoothly reversed as the drug wears off. This is a
straightforward consequence of the assumption that D2-
receptor blockade will slowly increase following APD
administration up to a maximum occupancy level, followed
by a slow reverse of this process. Since there are no
published data on this matter, these model-driven predic-
tions were tested by analyzing the same data as described
above. Figure 7 shows how the distributions of avoidance
and escape responses vary with time since (subcutaneous)
administration for both typical and atypical APDs. Since the
drugs are most effective at blocking the avoidance response
at 20 and 90min following administration (Wadenberg et al,
2001), we assume that dopamine is maximally blockaded at

these times (see also Wadenberg et al, 2000). Although there
is considerable variance across the four drugs, the
important observation is that as the APDs take effect, the
peak latency of the remaining avoidance responses (1–10 s)
increases, and this effect is reversed as the drug wears off. In
contrast, this shift in peak latency is not observed for the
escape response, validating the predictions of the model.

DISCUSSION

We have presented a model that was originally developed to
account for the classic effects of APDs on avoidance vs
escape. However, the model was also able to generate
testable predictions pertaining to response latency profiles,
and these predictions were empirically verified for a range
of typical and atypical APDs.
While our model is an abstract one, several elements of it

can be related to what physiologists and psychologists
would recognize as sensory, motoric, and reward processes.
Sensory processes can be equated with the model’s ability to
identify and activate the representation of the current state.
Motoric processes can be equated with the model’s ability to
take a prescribed action. While reward processes are
complex and increasingly seen as a multidimensional
construct (Berridge and Robinson, 2003), the ability of the
model to perceive the actual reward value associated with
each state can be equated with ‘liking’ or hedonia (Berridge
and Robinson, 1998). However, the model proposes that
APDs are acting not in any of these processes, but in the
generation of expected future reward. Expected future
reward is used by all formal reinforcement learning
methods to drive action selection, and is therefore a natural
analogy of both motivation and incentive salience (or
‘wanting’ in the terminology of Berridge and Robinson
(1998); Mc Clure et al (2003)). Our model of APD action in
CAR is therefore consistent with the claim that the selective
disruption of the avoidance response is due to the APD-
induced impairment of the motivational processes of the
animal via blockade of dopamine neurotransmission.
Our approach is different to the Temporal Difference

(TD) prediction-error hypothesis (Houk et al, 1995; Schultz
et al, 1997), which suggests that the phasic dopamine
response signals the difference (‘error’) between the future
reward predicted by the animal and the actual reward
received by the animal. This error is then used exclusively to
drive the learning process forwards in a biologically
plausible manner (Waelti et al, 2001). In contrast, our role
for dopamine is in the generation of expected future reward
completely independently of the acquisition process. The
advantages of our approach are that we can model not only
the effect of dopamine manipulation on the expression of
previously acquired behavior but also the sensitivity of this
effect to the relationship between CS (or action) and US (or
outcome).
The disadvantage of our approach is that we have not

modeled the acquisition process itself (ie the construction of
Figures 1, 2, and 4), in which dopamine is likely to play an
important role. We therefore suggest that by combining the
prediction error hypothesis of dopamine with our proposed
gating role for dopamine, it might be possible to address
a wider range of behavioral data pertaining to both
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acquisition and expression. Towards this end, a number
of dopamine models have been suggested that combine
TD-based representations with explicit internal model
representations (Daw et al, 2003; Dayan, 2002; Dayan and
Balleine, 2002; Suri and Schultz, 1998; Suri, 2001, 2002;

Suri et al, 2001). However, a significant challenge remains
in bridging the gap between models of dopamine
neuron firing, and models of behavioral and psycho-
logical phenomena in which dopamine may play a
pivotal role.
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By hypothesizing that dopamine modulates the efficacy of
internal transition connections between environmental
states, we have been able to produce a model that extends
the performance of an existing model of neuroleptic action
in CAR (Servan-Schreiber and Blackburn, 1995) to account
for secondary avoidance and to predict novel latency data
(Figures 6 and 7). However, apart from predicting novel
data and aiding our understanding of psychological
processes, the other desirable property of a computational
model is an ability to unite existing cognitive hypotheses

within a formal framework. For example, Berridge and
Robinson (1998) have suggested that dopamine mediates
the wanting component of reward as distinct from the
liking, and in our model, following McClure et al (2003), we
interpret expected future reward as precisely this incentive
salience or wanting (although ‘reversed’ for the purposes of
an aversive paradigm). Also, based on anatomical and
neurophysiological data, Horvitz (2000, 2002) have sug-
gested that dopamine may play a gating role between the
sensory, motor and reward-based afferents that converge on

Figure 7 A comparison of animal performance (white background) at various intervals following APD administration with model performance (gray
background) for various values of Do1 (selected from Figure 5). Doses were selected from the available data so that avoidance was impaired but not
abolished allowing analysis of avoidance latencies. Experimental method as for Figure 6.

Figure 6 A comparison of model performance (gray background) for various values of Do1 (selected from Figure 5) with animal performance (white
background) 90min after the administration of various doses of typical and atypical APDs (4 days of drug-free acquisition had previously taken place).
Experimental procedure identical to Wadenberg et al (2001) except where described differently in the text. The animal graphs show the frequency (1 s bins)
of avoidance/escape summed over between 7 and 10 rats (different groups of rats were used for each of the four drugs). Each animal graph consists of data
from 20 consecutive trials with a random intertrial interval. Each graph is therefore constructed from between 7� 20¼ 140 and 10� 20¼ 200 individual
trials. The bars represent the number of responses in each whole second following the onset of the CS, normalized so that the total height of the bars¼ 1.
This provides a discrete approximation to a probability density function, which can be compared with the performance of the model. Escape failures caused
by trial termination at 30 s are simply added to the 30 s bin. Note that an unexpected large number of avoidance and escape failures are observed for the
0.05mg/kg dose of Haloperidol, and these even exceed those observed at 0.15mg/kg. We do not have a simple explanation for this anomaly. Whatever the
cause for this quantitative anomaly (misdosing, higher bioavailability, extra individual sensitivity), the qualitative correspondence between the model’s
predictions and experimental data can still be obtained by assuming a higher level of blockade at the 0.05mg/kg dose.
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the D2 receptor-rich striatal region of the brain. Our model
formally captures one interpretation of such gating. Finally,
Salamone et al (1997) observe that it is in the areas of
overlap between sensory, motor, and reward processes that
dopamine’s role is expressed, leading to the proposition
that ‘accumbens dopamine is important for responding to
stimuli that are spatially and temporally distant from the
organism’ (p 353). This statement summarizes the psycho-
logical value of dopamine in our model, since the greater
the number of intervening ‘states’ between action and
reward outcome in the animal’s internal world model, the
more susceptible to APD-induced devaluation that action or
stimulus will be. We are currently examining how this
principle can be used to account for a range of additional
data from appetitive paradigms in which dopamine
manipulation is shown to selectively influence motivation
towards stimuli that are spatially, temporally, or instru-
mentally distant from the animal (Cousins et al, 1996;
Richards et al, 1999; Rolls et al, 1974; Salamone et al, 1991,
1993, 1994; Wade et al, 2000). We are also currently
considering the implications of this model for a psycholo-
gical theory of APDs in psychosis and also in ADHD.
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