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Despite extensive investigation, the cellular mechanisms responsible for neuroleptic actions remain elusive. We have previously shown

that neuroleptics modulated the expression of some members of the ligand-activated transcription factors (nuclear receptors) including

the nerve-growth factor inducible gene B (NGFI-B or Nur77) and retinoid X receptor (RXR) isoforms. Using genetic and pharmacological

approaches, we investigated the role of NGFI-B and retinoids in acute behavioral and biochemical responses to dopamine antagonists.

NGFI-B knockout (KO) mice display a profound alteration of haloperidol-induced catalepsy and striatal neuropeptide gene expression.

Haloperidol-induced increase of striatal enkephalin mRNA is totally abolished in NGFI-B KO mice whereas the increase of neurotensin

mRNA expression is reduced by 50%. Interestingly, catalepsy induced by raclopride, a specific dopamine D2/D3 antagonist is completely

abolished in NGFI-B-deficient mice whereas the cataleptic response to SCH 23390, a dopamine D1 agonist, is preserved. Accordingly,

the effects of haloperidol on striatal c-fos, Nor-1, and dynorphin mRNA expression are also preserved in NGFI-B-deficient mice. The

cataleptic response and the increase of enkephalin mRNA expression induced by haloperidol can also be suppressed by administration of

retinoid ligands 9-cis retinoic acid and docosahexaenoic acid. In addition, we demonstrate that haloperidol enhances colocalization of

NGFI-B and RXRg1 isoform mRNAs, suggesting that both NGFI-B and a RXR isoform are highly coexpressed after haloperidol

administration. Our data demonstrate, for the first time, that NGFI-B and retinoids are actively involved in the molecular cascade induced

by neuroleptic drugs.
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INTRODUCTION

Antipsychotic drugs or neuroleptics are used to reduce
symptoms of schizophrenia. Although the putative mechan-
ism of action of neuroleptics has been extensively
investigated, the underlying cellular events responsible for
their clinical efficacy, as well as for their undesired side
effects remain elusive. Neuroleptics are divided into two
classes. Typical or conventional neuroleptics (such as
haloperidol) are defined as drugs that improve positive
symptoms of schizophrenia (eg hallucinations), but have a

high propensity to cause a variety of extrapyramidal
symptoms (EPS). EPS are among the most frequent
problems experienced with conventional antipsychotic
medication. It is estimated that as many as 90% of patients
treated with standard neuroleptics develop EPS (Kane,
2001). Atypical or new generations of neuroleptics (such as
clozapine or olanzapine) improve both positive and
negative symptoms of schizophrenia (eg low affect) with
lower propensity to induce motor side effects (Meltzer,
1995). However, serious and unexpected new side effects,
including agranulocytosis (clozapine) and dramatic weight
gains, have emerged with the used of the new generations of
neuroleptics (Allison and Casey, 2001). Owing to these side
effects and also for ecomonic considerations, haloperidol, a
conventional neuroleptic, is still commonly prescribed.
Blockade of the dopamine D2 receptor in the ventral
striatum is thought to underlie some of the antipsychotic
effect of neuroleptics (Seeman, 1995). However, interaction
with the dopamine D2 receptor in the dorsal striatum is also
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*Correspondence: D Lévesque, Neuroscience Unit, CHUQ Research
Center (CHUL), 2705 Boul. Laurier, Ste-Foy, Quebec, Qc, Canada
G1V 4G2, Tel: +1 418 654 2152, Fax: +1 418 654 2753,
E-mail: daniel.levesque@crchul.ulaval.ca

Neuropsychopharmacology (2004) 29, 335–346
& 2004 Nature Publishing Group All rights reserved 0893-133X/04 $25.00

www.neuropsychopharmacology.org



responsible for EPS induced by these drugs (Seeman, 1995).
Although the interaction of neuroleptics with neurotrans-
mitter receptors is well characterized, intracellular signaling
pathways triggered by this interaction remain mostly
unexplored. However, the ability of these drugs to induce
the expression of transcription factors and neuropeptides
has led to the suggestion that changes in gene expression
might be responsible for certain antipsychotic drug actions
(Hiroi and Graybiel, 1996; Steiner and Gerfen, 1998).
Nuclear receptors represent an important family of

proteins regulating gene expression. Several lines of
evidence from our laboratory suggest the possible involve-
ment of nuclear receptor family of transcription factors in
the effects of antipsychotic drugs. We have shown that
typical and atypical antipsychotics induced contrasting
patterns of expression of nerve growth factor-inducible
gene B (NGFI-B, also known as NR4A1 or Nur77) an orphan
nuclear receptor closely related to members of the steroid/
thyroid hormone receptor family (Hazel et al, 1988;
Milbrandt, 1988), after acute and chronic administration
(Beaudry et al, 2000). We have also shown that acute and
chronic neuroleptic treatment modulate the expression of
other transcription factors belonging to the nuclear receptor
family including retinoic acid receptors (RARs) and
retinoid X receptors (RXRs) (Langlois et al, 2001).
Retinoic acids, through interaction with ligand-activated

transcription factors RAR and RXR, regulate the expression
of numerous target genes and are particularly active during
brain development (Chambon, 1996; Maden, 2002). RARs
are specifically involved in retinoid signaling whereas RXRs
also participate in many other signaling events by serving as
heterodimerization partners not only for RARs, but also for
the vitamin D receptor, the thyroid hormone receptors (TR)
and different orphan members of the nuclear receptor
family of transcription factors such as Nurr1 and NGFI-B
(Nur77) (Perlmann and Jansson, 1995). Several lines of
evidence strongly suggest that in addition to have a key role
during development, retinoic acid might have an important
role in dopamine-innervated basal ganglia in the mature
brain. Both RARb and RXRg isoforms are expressed in the
striatum, nucleus accumbens and olfactory tubercle of both
newborn and adult rats (Krezel et al, 1999; Saga et al, 1999;
Zetterström et al, 1999). It has been shown that RARb- and
RXRg-deficient mice demonstrate impaired locomotion,
dopamine signaling (Krezel et al, 1999) and an altered
response to dopamine antagonists (Saga et al, 1999).
The aim of the present study was to assess the

involvement of NGFI-B and retinoids on the biochemical
and behavioral effects of neuroleptics. We studied and
compared the effects of acute neuroleptic administration in
wild-type (WT) mice and in a NGFI-B KO strain of mice
(Lee et al, 1995). We also investigated the effects of retinoid
ligands on biochemical and behavioral responses induced
by a neuroleptic.

EXPERIMENTAL PROCEDURES

Animal Care and Treatments

All procedures, including means to minimize discomfort,
were reviewed and approved by the Laval University Animal
Care Committee. NGFI-B KO mice were developed by the

group of Dr Milbrandt at the University of Washington (St
Louis, Missouri, USA) (Lee et al, 1995). They are healthy
and reproduce normally (Crawford et al, 1995; Lee et al,
1995). They were produced in a mixed background and
have been backcrossed into the C57BL/6 strain for at least
10 generations to reduce background heterogeneity (Jeff
Milbrandt, personal communication). NGFI-B-deficient and
WT (C57BL/6) mice (Charles River, Canada, weighing 20–
25 g) were acutely treated with the different dopamine
receptor antagonists (0.25ml, i.p.) at various doses (halo-
peridol 0.1, 0.5, and 1mg/kg; raclopride 1.25mg/kg and
SCH 23390 0.75mg/kg). Saline was used as vehicle for
haloperidol, raclopride, and SCH 23390 (RBI, Oakville, ON,
Canada). The animals were killed by decapitation under
CO2 anesthesia. For the evaluation of neuropeptide (pre-
proenkephalin, ENK; prodynorphin, DYN, and neurotensin/
neuromedin N precursor, NT) mRNA levels, animals were
killed 5 h after drug injection. For the evaluation of
immediate-early gene expression (NGFI-B, Nor-1, and
c-fos), the animals were killed 1 h after drug administration
(catalepsy was not measured in those animals). The vitamin
A derivative, 9-cis retinoic acid (9-cis RA) and the
polyunsaturated fatty acid (PUFA) docosahexaenoic acid
(DHA) were administered as stable suspensions in 4%
ethanol and 8% PEG-600 in sterile water (pH adjusted
between 5.5 and 6.5). In the experiments involving
combined treatments with retinoid ligands, the group of
animals treated with haloperidol alone also received the 9-
cis RA and DHA vehicle (4% ethanol and 8% PEG-600 in
sterile water). After decapitation, brains were rapidly
removed and immediately immersed into cold isopentane
(�401C) for a few seconds and kept at �801C until used.

Catalepsy

Catalepsy was evaluated using the inclined plan procedure
(Dobner et al, 2001). Mice were placed in a mesh wire grid
inclined to an angle of 701. The catalepsy time was defined
as the time for the mice to move all four paws. The test was
performed for a maximal duration of 180 s. Catalepsy was
measured at 15, 30, 60, 90, and 120min following dopamine
receptor antagonist administration (without or with reti-
noid ligands). Average catalepsy times represent the mean
catalepsy time obtained at 60 and 90min after injection.

Autoradiography

For determination of the density of dopamine D2 receptor-
binding sites, a buffer containing 50mM Tris-HCl, 120mM
NaCl, 5mM KCl, 1.5mM CaCl2, 4mM MgCl2, and 1mM
EDTA (pH 7.4) was used with 3 nM [3H]raclopride (specific
activity: 79.3 Ci/mmol, Dupont NENt, Guelph, ON, Canada)
(Tremblay et al, 1999). A measure of 1M (+)-butaclamol
(RBI, Natick, MA) was used to determine nonspecific
binding. Slides were exposed against tritium sensitive films
([3H]hyperfilms, Amersham, Oakville, ON, Canada) for 2
weeks. Quantification of autoradiograms was performed as
previously described (Tremblay et al, 1999).
For determination of the density of dopamine D1

receptor-binding sites, rat brain sections were preincubated
in a buffer containing 15mM Tris-HCl, 120mM NaCl, 5mM
KCl, 2mM CaCl2, 1mM MgCl2, 0.1% ascorbic acid, and
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0.1mM EDTA (pH 7.4) for 15min at room temperature and
then incubated in the same buffer containing 0.2 nM [N-
methyl-3H]SCH 23390 (specific activity: 85 Ci/mmol, Amer-
sham, Oakville, ON, Canada) for 1 h at room temperature. A
measure of 1M SCH 23390 (RBI, Natick, MA) was used to
determine nonspecific binding. Slides were exposed against
BiomaxMR sensitive films (Kodak, New Haven, CT) for 2
weeks.

Single and Double In Situ Hybridization Procedures

Cryostat coronal brain sections (12 mm) were mounted onto
Snowcoat X-trat slides (Surgipath, Winnipeg, MA, Canada)
and stored at �801C until used. Brain sections were fixed in
4% paraformaldehyde at 41C for 20min. For single in situ
hybridization, specific [35S]UTP-radiolabeled complemen-
tary RNA (cRNA) probes were used. The NGFI-B, c-fos,
ENK, DYN, and NT probe preparations have been described
in detail elsewhere (Tremblay et al, 1999; Beaudry et al,
2000; Langlois et al, 2001). The mouse Nor-1 probe was
generated from a PCR fragment of 393 bp (from nucleotide
572 to 964) (Maltais and Labelle, 2000) subcloned into
pBluscript SK+ linearized with HindIII to generate the
antisense cRNA. The radiolabeled probe was generated as
previously described (Langlois et al, 2001). In situ
hybridization of the riboprobes with tissue sections were
done at 55–581C, overnight, in a standard hybridization
buffer containing 50% formamide (Beaudry et al, 2000;
Langlois et al, 2001). Tissue sections were then apposed
against BiomaxMR (Kodak, New Haven, CT) radioactive
sensitive films for 2–10 days. Quantification of autoradio-
grams was performed using computerized analysis (NIH
Image software, Wayne Rasband, NIMH). Optical gray
densities were transformed into nCi/g tissue equivalent
using standard curves generated with 14C-microscales
(Amersham, Oakville, ON, Canada). Brain areas investi-
gated included the dorsolateral (StDL) and dorsomedial
(StDM) portion of the striatum, the shell (AcSh) and core
(AcC) of the nucleus accumbens, medial prefrontal (mPFC)
and cingulate (CC) cortices.
The double in situ hybridization procedure was per-

formed as previously described (Beaudry et al, 2000).
Briefly, the proportion of colocalization of the NGFI-B
transcript with the RXRg1 mRNA in vehicle- and APD-
treated animals was evaluated using simultaneous double in
situ hybridization with a [35S]UTP-labeled NGFI-B probe
and a nonradioactive digoxygenin (Dig)-labeled RXRg1
probe. The RXRg1 cRNA probe was labeled with Dig using
the Riboprobe System of Promega (Madison, MA) with the
Dig-RNA labeling mix (Roche Diagnostics, Laval, Qc,
Canada). Double in situ hybridization was performed in
the same conditions as for single in situ procedure. The dig-
cRNA probe (about 10 ng) was simply added in the same
hybridization solution with the radioactive (4� 106 cpm)
cRNA probe for NGFI-B. An additional step using a 50%
formamide solution in 2� SSC buffer after hybridization
was performed to reduce nonspecific Dig labeling. Revela-
tion of the Dig-labeling was performed with an anti-Dig
antibody conjugated to alkaline phosphatase (Boehringer
Mannheim, Laval, Qc, Canada) and evidenced using a
nitroblue tetrazolium chloride, 5-bromo-4-chloro-3-indolyl
phosphate and levamisole chromogen solution (Beaudry

et al, 2000). Slides were then dipped in LM-1 photographic
emulsion (Amersham, Oakville, ON, Canada) melted at
431C, air-dried and stored in the dark for 12 days at 41C.
The emulsion was developed in D-19 developer and fixed
(Kodak, New Haven, CT). Slides were coverslipped using a
water-soluble mounting medium (Permafluor, Lipshaw
Immunon, Pittsburgh, PA). Single- or double-labeled cells
were visualized and manually counted under bright-field
illumination with a Zeiss photo microscope at a magnifica-
tion of � 400. Neuron counting was performed on four
different sections obtained from a total of three animals per
group investigated. Fields for quantification were taken
within the StDL region.

Statistical Analysis

Data were compared using an analysis of variance (one-way
ANOVA), followed by a Fisher probability of least
significant difference (PLSD) test.

RESULTS

Neuroleptic-Induced Catalepsy is Strongly Reduced in
NGFI-B-Deficient Mice

Haloperidol induces a strong dose-dependent cataleptic
response in WT (C57BL/6) mice, but this cataleptic
response is dramatically reduced in the NGFI-B (�/�)
mice (Figure 1a–c). In addition, the cataleptic response
induced by raclopride, a specific D2/D3 receptor antagonist,
is completely blocked in the NGFI-B-deficient mice
(Figure 1d), whereas the catalepsy induced by SCH 23390,
a selective D1-like receptor antagonist, is not affected
(Figure 1e). The reduced effect of D2 receptor antagonists
(haloperidol and raclopride) is not due to a lower
expression of the D2 receptor in the KO mice, since the
levels of dopamine D2 receptor-binding sites measured with
[3H]raclopride binding are normal in the nucleus accum-
bens and the StDM, but are significantly upregulated in the
StDL of NGFI-B-deficient mice (Figure 2). Striatal levels of
the dopamine D1-binding site, measured with the specific
D1/D5 receptor ligand [3H]SCH 23390, are not significantly
changed in the NGFI-B KO mice compared to WT mice
(StDL: WT, 1877 6 and KO, 1707 9 fmol/mg of protein;
StDM: WT, 1497 5 and KO, 1327 7 fmol/mg of protein,
p¼ 0.06).

Specific Effects of Haloperidol on Gene Expression are
Disrupted in NGFI-B (�/�) Mice

Acute haloperidol administration increases both ENK
(Figure 3a, b) and neurotensin/neuromedin N precursor
(NT) (Figure 3c, d) mRNA levels in the StDL of WT mice.
Haloperidol-induced upregulation of ENK mRNA is totally
abolished and NT mRNA increase is reduced by 50% in
NGFI-B-deficient mice in the StDL (Figure 3b, d). Similar
effects are observed in other striatal areas (Table 1). The
effect of haloperidol on NT mRNA levels is completely
abolished in the AcSh in NGFI-B-deficient mice
(Table 1).
On the contrary, the effects of haloperidol on the

expression of DYN (Figure 4a, b), c-fos (Figure 4c, d), and
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Nor-1 (Figure 4e, f), a close homologue of NGFI-B (Paulsen
et al, 1995), are similar in WT and NGFI-B (�/�) mice.
However, the effect of haloperidol on Nor-1 mRNA levels is
significantly higher in NGFI-B-deficient mice compared to
WT mice (Figure 4f). Basal levels of striatal neuropeptide
transcripts and immediate-early genes (c-fos and Nor-1) in
NGFI-B (�/�) mice are equivalent to those of the untreated
WT mice (Figures 3 and 4). Similar effects are observed in
other striatal areas and other brain areas investigated
(Table 1).
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Figure 2 NGFI-B-deficient mice displayed higher levels of dopamine D2

receptors in the StDL compared to WT mice. D2 receptor levels were
unchanged in other striatal areas; StDM and AcSh. Levels of dopamine D2/
D3-binding sites were measured with [3H]raclopride (3 nM) autoradio-
graphy. Each histogram bar represents the mean7 SEM from five to seven
animals per group (**po0.01 vs NGFI-B (+/+) mice).
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NGFI-B and RXRc1 are Highly Colocalized after
Haloperidol Treatment

The StDL, which is associated with the control of locomotor
behaviors, displays a very high RXRg1 mRNA level
(Figure 5a). Interestingly, the distribution of the RXRg1
mRNA in the striatum corresponds to the localization of the
NGFI-B mRNA after the administration of haloperidol
(Figure 5a). Acute administration of haloperidol, as used
herein, did not significantly change RXRg1 mRNA levels in
the striatum (Figure 5b). The NGFI-B gene KO did not
modify the basal expression of this retinoid receptor
isoform (Figure 5b). However, double in situ hybridization
experiments indicate that haloperidol induces a dramatic
increase in the percentage of colocalization of NGFI-B and

RXRg1 mRNAs in the StDL (Figure 5c, d). This suggests that
both transcription factors are highly coexpressed upon
haloperidol administration. Therefore, we hypothesized that
retinoid ligands may interfere with neuroleptic-induced
catalepsy and gene expression.

Retinoid Ligands can Suppress Haloperidol-Induced
Catalepsy

To test this hypothesis, we administered 9-cis RA and DHA,
two potent RXR ligands, in combination with haloperidol to
WT mice (Figure 6). It has been previously shown that 9-cis
RA strongly enhances the transcriptional activity of the
NGFI-B/RXR heterodimer in vitro (Heyman et al, 1992;
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Figure 3 The effects of haloperidol on striatal neuropeptide expression associated to dopamine D2 receptors are reduced in NGFI-B KO mice. Effects of
HAL (1mg/kg) on the expression of the preproenkephalin (ENK) mRNA (a and b) and neurotensin/neuromedin N precursor (NT) (c and d) in NGFI-B-
deficient (NGFI-B(�/�)) and WT (NGFI-B(+/+)) mice using in situ hybridization. Representative autoradiograms generated with a specific [35S]UTP-
labeled ENK and NT riboprobes are shown in panels (a) and (c), respectively. Histograms of the effects of HAL in the StDL are shown in panels (b) and (d).
HAL administration increased ENK (b) and NT (d) mRNA levels in the StDL in NGFI-B (+/+) mice. In NGFI-B (�/�) mice, the acute effect of haloperidol
on the striatal level of ENK mRNA is abolished and its effect on NT mRNA is reduced by 50%. Values of mRNA levels are expressed in nCi/g of tissue
equivalent. Each histogram bar represents the mean7 SEM from 8–10 animals per group (**po0.01 and ***po0.001 vs respective VEH groups and
##po0.01 vs HAL-treated NGFI-B (+/+) mice).
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Vivat et al, 1997). More recently, DHA has been identified
as a natural ligand for retinoid receptors (de Urquiza et al,
2000; Egea et al, 2002). Administration of 9-cis RA in
combination with haloperidol dose-dependently reduces the
severity of drug-induced catalepsy (Figure 6a, b), whereas it
has no behavioral effect when injected alone (Figure 6a). A
similar dose–response effect is observed when increasing
concentrations of DHA are injected in combination with
haloperidol (0.5mg/kg) treatment (Figure 6c, d). Interest-
ingly, the highest dose of DHA (100mg/kg) completely
suppresses haloperidol-induced catalepsy (Figure 6d). Note
also that the effects of retinoid ligands become apparent
only after 90min after injections of the drugs, while
haloperidol starts to significantly induce catalepsy at
30min (Figure 6a, c).

Retinoid Ligands Prevent Haloperidol-Induced
Enkephalin mRNA Upregulation

Administration of 9-cis RA (10mg/kg) or DHA (100mg/kg)
in combination with haloperidol (0.5mg/kg) prevents or

abolishes the haloperidol-induced ENK gene expression in
the striatum of WT mice (Figure 7). Administration of 9-cis
RA in combination with haloperidol significantly reduced
below controls ENK mRNA levels in the nucleus accum-
bens, whereas acute administration of retinoid ligands alone
had no effect on ENK expression (9-cis RA alone in StDL:
86.27 12.0, not significant). Note that the 0.5mg/kg dosage
of haloperidol used here gave a similar increase (about 50%)
of the ENK mRNA level as the dosage of 1mg/kg used in
Figure 3.

DISCUSSION

The present results establish a role for NGFI-B in the
molecular cascade induced by dopamine D2 receptor
antagonist leading to catalepsy and specific modulations
of neuropeptide gene expression. In addition, we show that
the retinoid ligands 9-cis RA (a vitamin A derivative) and
DHA (an o-3 PUFA) can strongly reduce or even suppress
haloperidol-induced catalepsy and enkephalin opioid gene

Table 1 Effects of Haloperidol on Neuropeptide and Immediate-Early Gene mRNA Levels in Various Brain
Areas of WT and NGFI-B KO Mice

mRNA levels in various brain areas (% of control)

mRNA species Groups StDM AcSh AcC mPFC CC

Nor-1 WT-VEH 100.07 7.8 100.07 7.9 100.07 8.2 100.07 4.7 100.07 3.4

WT-HAL 195.27 15.1*** 205.17 9.9*** 227.77 14.3*** 103.47 4.1 95.77 4.1

KO-VEH 107.17 7.7 95.27 7.7 105.27 7.4 98.97 3.9 98.07 3.9

KO-HAL 282.57 23.2*** 242.47 16.7*** 276.67 24.7*** 105.07 2.9 102.27 3.1

c-fos WT-VEH 100.07 9.0 100.07 12.8 100.07 22.4 100.07 18.6 100.07 15.5

WT-HAL 703.87 102.3*** 445.27 74.2** 810.47 153.4*** 188.57 32.6* 149.37 30.9

KO-VEH 148.97 20.2 151.07 29.5 132.97 26.1 124.67 11.8 175.37 26.7

KO-HAL 1051.27 133.8*** 584.67 77.7** 859.07 105.9*** 228.67 59.6* 199.57 48.5

ENK WT-VEH 100.07 8.3 100.07 4.7 100.07 6.0 ND ND

WT-HAL 131.67 6.3* 135.07 7.0* 128.67 7.7 ND ND

KO-VEH 83.97 6.2 103.47 10.8 100.37 11.9 ND ND

KO-HAL 97.27 13.8 97.47 15.4 95.67 17.9 ND ND

DYN WT-VEH 100.07 9.2 100.07 7.8 100.07 7.1 ND ND

WT-HAL 100.27 7.4 83.57 5.5 101.17 6.8 ND ND

KO-VEH 96.97 6.3 97.37 5.3 99.17 5.8 ND ND

KO-HAL 97.87 13.2 97.37 7.6 115.37 8.8 ND ND

NT WT-VEH 100.07 8.7 100.07 21.5 ND ND ND

WT-HAL 794.07 35.2 *** 481.37 26.9*** ND ND ND

KO-VEH 79.67 22.7 67.97 23.4 ND ND ND

KO-HAL 527.87 32.4** 151.07 14.6 ND ND ND

*po0.05, **po0.01 and ***po0.001 vs respective WT-VEH group.
ND, not detectable; AcC, nucleus accumbens core; AcSh, nucleus accumbens shell; mPFC, medial prefrontal cortex; CC, cingulate
cortex; StDM, dorsomedial portion of the striatum; ENK, enkephalin; DYN, dynorphin; NT, neurotensin; WT-VEH, wild-type mice plus
vehicle; WT-HAL, wild-type mice plus haloperidol (1mg/kg); KO-VEH, NGFI-B knock-out mice plus VEH; KO-HAL, NGFI-B knock-out
mice plus HAL. Values are expressed in percent of respective WT-VEH groups and represent the mean7 SEM from six to eight
animals.
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expression, suggesting that retinoids might also be involved
in this molecular cascade. The high percentage of coloca-
lization of both NGFI-B and RXRg1 transcripts after
haloperidol treatment in the StDL, a brain region involved
in the control of locomotor behaviors, suggest that these
effects may take place in the same striatal cell population.
Haloperidol-induced catalepsy is thought to reproduce

acute EPS observed in humans (Hoffman and Donovan,
1995). Our results demonstrate that the cataleptic behavior
induced by dopamine D2 antagonists is strongly reduced in
NGFI-B-deficient mice. The residual catalepsy observed in
the NGFI-B (�/�) mice after high doses of haloperidol may
result from the interaction of this drug with other amine
receptor subtypes in the brain (Leysen et al, 1993).
Interestingly, the level of dopamine D2 receptors is
significantly increased in the StDL in NGFI-B KO mice
suggesting that NGFI-B might also act upstream of D2

receptors. The effects of genetic deletion of NGFI-B are
specific to dopamine D2-mediated pathways since the
catalepsy induced by SCH 23390, a dopamine D1 antagonist,
and D1 receptor density are not affected.
At biochemical levels, several studies have shown that

administration of neuroleptics modulates a number of gene
transcripts in the CNS. The two main families of transcripts
studied so far include Fos and striatal neuropeptides such as
enkephalin and neurotensin (Herdegen and Leah, 1998;
Steiner and Gerfen, 1998). The effect of neuroleptics on
opioid neuropeptide expression is seen as an adaptative
phenomenon to re-establish the normal activity of dopa-
mine systems (Steiner and Gerfen, 1998), whereas it has
been suggested that neurotensin is required for the
activation of specific populations of striatal neurons by
typical antipsychotics (Dobner et al, 2001). Our results
demonstrate that the genetic deletion of NGFI-B also
interferes with the effect of haloperidol on striatal
enkephalin and neurotensin expression. These two tran-
scripts have been associated with the dopamine D2 receptor
expressing cells in the striatum (Gerfen et al, 1990; Le Moine
and Bloch, 1995; Augood et al, 1997). This is in agreement
with the fact that catalepsy induced by D2 receptor
antagonists but not D1 antagonists, is strongly reduced in
NGFI-B-deficient mice. These results are also consistent
with our previous data showing that haloperidol-induced
NGFI-B expression is restricted to the subpopulation of
striatal cells expressing the enkephalin and neurotensin
transcripts (Beaudry et al, 2000). A specific association of
NGFI-B with dopamine D2-mediated pathways is also
supported by the fact that haloperidol-induced upregulation
of c-fos mRNA is not affected by the genetic deletion of
NGFI-B.
At the present time, it is difficult to pinpoint cellular

events that might explain the absence of cataleptic behavior
and striatal neuropeptide upregulation in NGFI-B-deficient
mice. We have previously shown that acute haloperidol
strongly increased NGFI-B mRNA levels in the rat forebrain
(Beaudry et al, 2000), but the intracellular signaling events
triggering by neuroleptics and leading to modulation of
NGFI-B are unknown. It has been shown in vitro that NGFI-
B is a direct target of kinases associated with G protein-
coupled receptors intracellular signaling such as cyclic AMP
(cAMP) and MAPK pathways (Kovalovsky et al, 2002;
Slagsvold et al, 2002; Maira et al, 2003). Since activation of
the dopamine D2 receptor normally reduces cAMP levels
and striatal levels of NGFI-B (Gervais et al, 1999), blockade
of the D2 receptor by neuroleptics may increase or release
inhibition of cAMP-dependent protein kinase activity
(PKA) and result in an upregulation NGFI-B expression
(Beaudry et al, 2000). Also, we cannot exclude that post-
translational modification (phosphorylation), which greatly
affect NGFI-B activity (Maira et al, 2003), of pre-existing
NGFI-B or de novo haloperidol-induced NGFI-B may play a
role in the effects observed here. Other signaling pathways
such as those implicating phospholipase C, intracellular
calcium stores and protein kinase C (PKC) might also be
involved (see Hernandez-Lopez et al, 2000). In addition,
modulation of NGFI-B expression might also be indirect
through modulation of glutamate neurotransmission by
neuroleptic drugs (Leveque et al, 2000). Additional
investigations are needed in order to identify the cellular
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NGFI-B and RXRg1 transcripts. (a) Comparison of the distribution of
NGFI-B and RXRg1 mRNAs in VEH- and HAL-treated (1mg/kg) mice in
the caudal striatum. Acute administration of haloperidol strongly increases
NGFI-B mRNA levels in a striatal area expressing a high density of the
RXRg1 mRNA in basal conditions. (b) Effects of HAL (1mg/kg) on RXRg1
mRNA levels in the StDL in NGFI-B (+/+) and (�/�) mice. Each
histogram bar represents the mean7 SEM from five to seven animals per
group. (c) Representative image of the colocalization of NGFI-B and RXRg1
mRNAs in the StDL after acute haloperidol administration. The double in
situ hybridization procedure was performed with a [35S]UTP-labeled NGFI-
B probe (silver grains) combined with a digoxigenin-labeled RXRg1 probe
(dark staining revealed with an anti-Dig antibody conjugated to alkaline
phosphatase) (Beaudry et al, 2000). Arrowheads indicate positive NGFI-B-
labeled cells (silver grains); thin arrows show positive RXRg1 cells (dark
depots) and bold arrows represent cells positive for both NGFI-B and
RXRg1 transcripts. (d) Acute HAL administration strongly increase the
percentage of colocalization of NGFI-B and RXRg1 mRNAs in the StDL in
WT animals (***po0.001 vs VEH-treated animals). Values are expressed
in percentage of colocalization (double-labeled cells) compared to VEH-
treated animals and represent the mean7 SEM from three animals.
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events involved in the modulation of NGFI-B levels by
neuroleptics.
The present results also indicate that retinoids might be

involved in behavioral and biochemical effects of neuro-
leptics. The RXRg1 isoform is by far the most abundant
retinoid receptor expressed in the adult StDL (Zetterström
et al, 1999; Langlois et al, 2001) and therefore, the effects of
retinoid ligands are likely mediated through interaction
with this receptor isoform. We show here that haloperidol
administration strongly increase the percentage of coloca-
lization of NGFI-B and RXRg1 transcripts in the striatum. In

addition, coadministration with haloperidol of two retinoid
ligands, 9-cis RA and DHA (Heyman et al, 1992; de Urquiza
et al, 2000), dose-dependently reduced or suppressed
haloperidol-induced catalepsy and enkephalin mRNA up-
regulation. Although the enkephalin gene promoter con-
tains a retinoic acid responsive element (RARE) (Chan et al,
1997), the activity of NGFI-B on the enkephalin promoter
activity is not known. Interestingly, it has been previously
shown that genetic ablation (KO) of the RXRg gene also
produces a blunted cataleptic behavior in response to
dopamine antagonist (Saga et al, 1999) and an altered
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enkephalin gene expression in the striatum (Krezel et al,
1998). Based on these considerations, it is tempting to
suggest that both NGFI-B and RXR, possibly as a
transcriptional complex, may be involved in the signaling
cascade induced by haloperidol. Indeed, it has been shown
that NGFI-B and RXR can form an heterodimer that is
active on transcription (Vivat et al, 1997; Castillo et al,
1998) and that 9-cis RA strongly enhances the transcrip-
tional activity of the NGFI-B/RXR heterodimer in vitro
(Heyman et al, 1992; Vivat et al, 1997).
The acute effect of retinoid ligands on haloperidol-

induced catalepsy may be too rapid to support an alteration
of retinoid receptor-dependent transcriptional activities.
However, the effects of retinoid ligands on haloperidol-
induced catalepsy is somewhat delayed and started to
become apparent only 90min after the injection of the
drugs, whereas catalepsies induced by haloperidol alone or
in combination with retinoid ligands are indistinguishable
at earlier time points (30 and 60min, see Figure 6a, c). On
the other hand, recent evidence suggests that some steroids
normally interacting with nuclear receptors also have rapid
effects via a direct interaction with protein kinase activities
in the cell cytoplasm (Nilsson et al, 2001). For example, a
recently developed synthetic retinoid, 6-[3-(1-adamantyl)-
4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN),
can exert its cell cycle arrest and apoptotic activity by a
signaling pathway independent of retinoid receptor activa-
tion (Dawson et al, 2001). Thus, further experiments will be

necessary in order to identify the exact mechanism involved
in the effects of 9-cis RA and DHA in the present paradigm.
Many components involved in the metabolic pathway of

all-trans and 9-cis RA are missing in the adult striatum. For
example, the RA-synthesizing retinaldehyde dehydrogenase
enzymes are poorly expressed in the fully developed
striatum (Wagner et al, 2002). The cellular retinal-binding
proteins (CRBP) are not expressed in the striatum of adult
rodents and the cellular retinoic acid-binding protein
(CRABP) is only expressed in cholinergic neurons of the
striatum and not in medium spiny neurons (Zetterström
et al, 1999). These observations are not consistent with an
active ligand-dependent role of retinoic acid derivatives in
those cells. Thus, a ligand-independent transcriptional
activity of the NGFI-B/RXR complex that is readily formed
after haloperidol-induced NGFI-B mRNA levels in the
striatum (Beaudry et al, 2000) may be involved. Indeed,
NGFI-B possesses an uncommonly potent activation func-
tion-1 (AF-1) domain that is essential for ligand-indepen-
dent activation of gene expression, cofactor recruitment and
interaction with RXR isoforms (Wansa et al, 2002). Thus,
we can hypothesize that addition of a RXR agonist (9-cis RA
or DHA) modifies the transcriptional activity of the
complex (for a ligand-dependent activity) that interferes
with haloperidol-induced effects. Such a twist from
constitutive to ligand-induced activity can be observed in
vitro after specific mutations in the ligand-binding pocket
of RXR (Vivat et al, 1997).
In lymphocyte, NGFI-B (Nur77; NR4A1) plays an

important role as a proapoptotic factor, but no effect of
the KO on the activity of immune cells has been observed
(Liu et al, 1994; Woronicz et al, 1994). In fact, it appears
that the absence of NGFI-B is totally compensated by Nor-1
(Lee et al, 1995; Cheng et al, 1997). The Nor-1 mRNA is also
expressed in the striatum and, as NGFI-B its expression can
be increased by acute haloperidol administration (Figure 3)
(Werme et al, 2000). In the NGFI-B-deficient mice, the effect
of haloperidol on Nor-1 mRNA levels is significantly higher
compared to WT mice. This could indicate that some
compensatory phenomenon may have developed in the
NGFI-B-deficient mice. However, the effect of this putative
redundancy by Nor-1 over NGFI-B activity has no apparent
effect on the biochemical and behavioral components
analyzed here. In addition, haloperidol-induced cataleptic
response is preserved in Nor-1 KO mice (unpublished data,
in collaboration with Dr Yves Labelle, Saint-Francois
d’Assise Research Center, Quebec, Canada). Thus, it
appears that unlike in the immune system, NGFI-B and
Nor-1 expressed in the striatum have distinct functions. It
has been shown that Nor-1, unlike NGFI-B (Nur77) and
Nurr1, cannot form heterodimers with members of the RXR
family (Paulsen et al, 1995; Zetterström et al, 1996). This
reinforces the possibility of an involvement of an NGFI-B/
RXR complex in the effects investiged here.
Collectively the present set of data indicate, for the first

time, an involvement of NGFI-B and retinoids in a signaling
cascade triggered upon administration of dopamine D2

receptor antagonists. More specifically, they suggest that
NGFI-B and retinoids are involved in the generation of
acute EPS (parkinsonism) and enkephalin opioid gene
expression induced by a conventional neuroleptic. In
addition, our data suggest that retinoid ligands might be
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used to prevent acute EPS induced by a typical neuroleptic.
Other functions associated with the nucleus accumbens and
the StDM (more limbic areas) may also be associated with
an NGFI-B activity, since similar alterations of haloperidol-
induced biochemical effects are observed in those structures
in the NGFI-B-deficient mice (Table 1). The role of retinoids
in the development of the CNS is well known (Maden, 2002)
and molecular and genetic approaches have previously
suggested an association of retinoid genetic markers and
vulnerability to schizophrenia (Goodman, 1998; LaMantia,
1999). The present data indicate, for the first time, that
retinoids (a vitamin A derivative and an o-3 PUFA) and
nuclear receptors may be involved in neuroleptic-mediated
actions in fully developed animals. More experiments are
needed in order to fully understand the interaction between
cell surface dopamine receptors and ligand-activated
transcription factors (nuclear receptors). Nevertheless, the
present results suggest that other therapeutic targets (NGFI-
B and retinoid receptors) may exist to improve conven-
tional neuroleptic efficacy and reduce EPS.
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generously providing us with Nor-1 knockout mice. DL
holds a scholarship from the Fonds de la Recherche en
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