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To model aspects of trait anxiety/depression, Wistar rats were bred for extremes in either hyper (HAB)- or hypo(LAB)-anxiety as

measured on the elevated plus-maze and in a variety of additional behavioral tests. Similar to psychiatric patients, HAB rats prefer passive

stress-coping strategies, indicative of depression-like behavior, show hyper-reactivity of the hypothalamo-pituitary–adrenal axis, and a

pathological response to the dexamethasone/corticotropin-releasing hormone (CRH) challenge test. Here we tested central mRNA

expression, release patterns, and receptor binding of neuropeptides critically involved in the regulation of both anxiety-related behavior

and the HPA axis. Thus, CRH, arginine-8-vasopressin (AVP), and oxytocin (OXT) were studied in brains of HAB and LAB males both

under basal conditions and after exposure to a mild emotional stressor. In HAB rats, CRH mRNA was decreased in the bed nucleus of

the stria terminalis only. While no significant difference in CRH1-receptor binding was found in any brain area, CRH2-receptor binding

was elevated in the hypothalamic paraventricular nucleus (PVN), the ventromedial hypothalamus, and the central amygdala of HABs

compared to LABs. AVP, but not OXT, mRNA expression as well as release of the neuropeptide, were higher in the PVN of HABs,

whereas AVP V1a-receptor binding failed to show significant differences in any brain region studied. Remarkably, intra-PVN treatment of

HABs with the AVP V1-receptor antagonist d (CH2)5 Tyr (Me) AVP resulted in a decrease in anxiety/depression-related behavior. The

elevated expression and release of AVP within the PVN of HAB rats together with the behavioral effects of the AVP V1-receptor

antagonist suggest a critical involvement of this neuropeptide in neuroendocrine and behavioral phenomena associated with trait anxiety/

depression.
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INTRODUCTION

In clinical therapy of anxiety disorders and depression,
mostly incidentally or empirically detected substances are
applied that may show a variety of undesirable side effects.
Therefore, a deeper knowledge of the neurobiological
mechanisms underlying normal and pathological emotion-
ality may result in improved therapeutic approaches. Since
humans suffering from psychiatric disorders are not easily
accessible for neurobiological studies, several animal
models have been developed to mimic psychopathological
conditions (Overstreet et al, 1992; Driscoll et al, 1998;
Escorihuela et al, 1999). Over the past few decades, two

Wistar rat lines have been bred in our laboratory for
extremes in high (HAB) or low (LAB) anxiety-related
behavior on the elevated plus-maze (EPM) and were now
established as a novel animal model of trait anxiety/
depression (for a review, see Landgraf and Wigger, 2002,
2003).
In a variety of additional behavioral tests, HAB rats

showed indices of hyper-emotionality, hyper-reactivity, and
passive stress-coping strategies indicative of depression-like
behavior (Liebsch et al, 1998a, b; Henniger et al, 2000; Ohl
et al, 2001; Wigger et al, 2001; Keck et al, 2002), whereas
LABs were hypo-anxious and preferred active stress-coping
strategies. This behavioral divergence could be reproduced
in different laboratories by different experimentors and was
thus shown to be a consistent and robust trait (Salomé et al,
2002). Treatment of HABs with anxiolytic (diazepam,
Liebsch et al, 1998b) or antidepressive (paroxetine, Keck
et al, 2003) drugs resulted in a pronounced reduction in
anxiety-related and depression-like symptoms, respectively,
thus providing pharmacological validation of the animal
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model. It may, thus, serve as a useful tool for studying the
role of central neuromodulators and neurotransmitters in
regulating behavioral as well as neuroendocrine parameters
associated with trait anxiety/depression.
One of the main neuroendocrine systems suggested to be

critically involved in anxiety/depression-related behavior is
the hypothalamic–pituitary–adrenocortical (HPA) axis, well
known to be activated by exposure to emotional and/or
physical stressors (Plotsky, 1991; Aguilera, 1994). The release
of corticotropin-releasing hormone (CRH) and arginine-8-
vasopressin (AVP) from neurons of the paraventricular
hypothalamic nucleus (PVN) into the pituitary portal blood
triggers the secretion of adrenocorticotropin (ACTH) from
the anterior lobe. Subsequently, corticosterone is secreted
from the adrenal cortex into blood and, beside its metabolic
effects, exerts a negative feedback on HPA axis activity
via pituitary, hypothalamic, limbic, and cortical regions
(Sapolsky and McEwen, 1985; De Kloet et al, 1991, 1999).
Resembling depressive patients (Holsboer, 1989), hyper-
anxious HAB rats show signs of an elevated HPA axis
reactivity upon exposure to a mild emotional stressor
(Landgraf et al, 1999) and a pathological outcome of the
dexamethasone/CRH test (Keck et al, 2002). Interestingly,
the latter may be normalized by peripheral administration
of a V1-receptor (R) antagonist suggesting a critical
involvement of endogenous AVP in this neuroendocrine
aberration linked to anxiety/depression (Keck et al, 2002).
In addition to and independent of its role in neuroendo-

crine regulation, brain AVP has been described to
contribute to the control of anxiety-related behavior. Both
transiently decreasing V1a-R expression in the septum
using antisense targeting and infusion of a V1-R antagonist
decreased anxiety in rats, as measured by increased time
spent in the open arm of the EPM (Landgraf et al, 1995a;
Liebsch et al, 1996). Consistent with these observations,
voles with elevated V1a-R expression in the ventral
pallidum exhibited a decrease in time spent in the open
arm of the EPM (Pitkow et al, 2001). Similar to AVP, CRH at
the level of the brain induces anxiogenic effects (van Gaalen
et al, 2002) as part of its complex involvement in stress-
related responses of the organism. Accordingly, treatment
with the novel CRH-R1 antagonist R121919 reduced
anxiety-related behavior in HAB, but not LAB animals
(Keck et al, 2001). In view of the wide range of CRH and
AVP effects on anxiety we hypothesize thatFsimilar to but
independent of HPA axis regulationFboth neuropeptides
in varying ratios may shape behavioral phenomena linked
to innate emotionality. Therefore, further investigation of
central CRH and AVP systems controlling both anxiety-
related behavior and HPA axis activity is a reasonable
approach in the research of the neurobiological basis of
physiological and pathological anxiety.
We examined mRNA expression, central release patterns,

and receptor binding of CRH and AVP in both HAB and
LAB rats under basal conditions and after mild emotional
(10-min exposure to an open arm of the EPM; Landgraf et al,
1999) or combined emotional and physical (forced swim;
Liebsch et al, 1998b; Neumann et al, 1998) stimulation by
means of in situ hybridization, in vivo microdialysis, and
receptor-binding autoradiography. Additionally, to investi-
gate the functional impact of intra-PVN AVP expression
and release in trait anxiety, HAB rats were infused with an

AVP V1-R antagonist directly into the hypothalamic PVN,
and behavioral consequences of the treatment were
demonstrated in the EPM and forced swim tests. Similar
to CRH and AVP, the structurally related neuropeptide
oxytocin (OXT) was recently reported to contribute to the
regulation of both HPA axis activity and emotional behavior
(Windle et al, 1997; Neumann et al, 2000a; Bale et al, 2001).
These results prompted us to determine OXT mRNA
expression and intra-PVN release additionally in the same
animals studied for CRH and AVP.

MATERIALS AND METHODS

Animals

The animal studies were conducted in accordance with the
Guide for the Care and Use of Laboratory Animals of the
Government of Bavaria and the guidelines of the NIH.
As described in detail by Landgraf and Wigger (2002),

Wistar rats obtained from a commercial supplier (Charles
River, Sulzfeld, Germany) were selected using the results
from an EPM test and mated to establish the lines termed
HAB and LAB. Both rat lines were treated strictly in parallel
in terms of care, mating, and behavioral testing in the
animal facility of the Max Planck Institute of Psychiatry in
Munich, under standard laboratory conditions (12:12 h
light/dark cycle, lights on at 0600, 221C, 60% humidity,
standard rat chow and tap water ad libitum). Data
presented in this paper were obtained from male animals
from the F9–F12 generations.

Behavioral Tests and Stress Paradigms

EPM test and open-arm exposure. The EPM test is based
on creating a conflict between the rat’s exploratory drive
and its innate fear of open and exposed areas (Pellow et al,
1985; Liebsch et al, 1998a) and consisted of a plus-shaped
platform, lit by a mean light intensity of 100 lux, with two
closed (with 40 cm walls) and two open arms (each
50� 10 cm2), connected at the center by a neutral zone
(10� 10 cm2) and elevated 73 cm above the floor.
The animals, still in their home cages, were transferred to

the EPM laboratory at least 16 h prior to the test that was
always carried out between 0800 and 1200. Before the
introduction of each rat, the maze was cleaned with water
containing a detergent. The animal was then placed onto the
central area of the maze, facing a closed arm. During the 5-
min exposure, the following parameters were recorded by
means of a video/computer system (Plus-maze V2.0, Ernst
Fricke, Germany, 1993): (i) the number of entries into open
and closed arms, (ii) percentage of entries into open arms
(ratio of open-arm entries to sum of entries into all arms),
(iii) the time spent in both types of arms, (iv) the percentage
of time spent on the open arms (ratio of time spent on open
arms to total time spent on all arms), and (v) latency to the
first entry into an open arm.
When using the maze as a mild emotional stressor (open-

arm exposure), entries into the neutral zone and the closed
arms were blocked during the 10-min exposure.

Forced swim. The rats were placed into a Plexiglas
container (40 cm diameter, 60 cm high) filled to a height
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of 50 cm with 191C tap water. After a 10-min swim, animals
were gently dried with a cloth towel and placed back into
their home cage. Durations of swimming, struggling, and
floating behavior as well as latency to the first signs of
floating were scored by a trained observer blind to
treatment using a computer program (Eventlog Event
Recorder V1.0, Robert Henderson, Germany, 1986).

Surgeries

The microdialysis probes (U-shaped, Spectra/Por hollow
fiber dialysis membrane, outer diameter 0.25mm, 1.5mm
length, in vitro recovery of radiolabeled AVP and OXT
between 1.6 and 2.0%) were implanted under halothane
anesthesia (Hoechst, Frankfurt am Main, Germany) 2 days
before starting the experiments. Rats were fixed in a
stereotaxic frame, the calvaria was exposed, and the
microdialysis probe was lowered with its U-shaped tip
reaching the right PVN (1.8mm caudal to bregma, 1.6mm
lateral to midline, 9.2mm beneath the surface of the skull
with an angle of 101 to the vertical to avoid damage to the
sagittal sinus; Paxinos and Watson, 1998). For antagonist
administration, both PVNs were approached by one probe
(1.8mm caudal to bregma, 3.0mm lateral to midline,
9.4mm beneath the surface of the skull with an angle of
201 to the vertical). The microdialysis probe was fixed to the
skull, and two jewelers’ screws with dental acrylic, and the
animals were injected with 0.03ml of a depot-antibiotic
substance (Tardomyocels, Bayer, Leverkusen, Germany).
The microdialysis probe was connected to in- and outflow
tubing (PE-10, Portex, UK). Following surgery, rats were
individually housed in transparent Plexiglas cages
(24� 31� 35 cm3) and handled carefully to familiarize
them with the microdialysis sampling and infusion
procedures, respectively.

Experimental and Analytical Protocols

The focus was laid essentially on those brain areas known to
be involved in the regulation of both HPA axis and anxiety/
depression-related behavior.

mRNA expression and neuropeptide receptor binding.
Male HABs and LABs (n¼ 5–7 per group, 250–300 g) were
used either under undisturbed conditions (all studies),
30min (CRH-R binding assays) or 2 h (in situ hybridization
for AVP and OXT mRNA) after exposure to a mild
emotional stressor (10min on an open arm of the EPM).
The animals were decapitated under short halothane
anesthesia, and the removed brains were shock-frozen in
dry-ice chilled methylbutane.

CRH mRNA in situ hybridization histochemistry. Radio-
labeled rat cRNA probes were used following procedures
described previously (Young et al, 1997; Sánchez et al, 1999,
2000). Briefly, sections were fixed in 4% paraformaldehyde,
then acetylated (0.25% acetic anhydride in 0.1M triethanol-
amine), dehydrated, delipidated, and air-dried. After pre-
hybridization (531C, 2 h) and drying, hybridization
occurred overnight (531C) with purified cRNA probes
(0.3 mg probe� length (kb)/ml). [35S]-radiolabeled antisense
and sense cRNAs were transcribed from a 500 bp cDNA

EcoRI–PvuII fragment subcloned from a 1.2 kb EcoRI
fragment of a full-length rat CRH cDNA (kindly provided
by Dr K Mayo, Northwestern University, Evanston, IL).
Antisense and sense cRNA probes were synthesized
incorporating [35S]CTP (New England Nuclear, Boston,
MA) at a specific activity of 9� 108 cpm/mg probe. After
several washes, sections were treated with ribonuclease A
(20 mg/ml in RNase buffer) followed by incubation with DTT
(1mM). Finally, sections were again washed, dehydrated,
air-dried, and exposed to Kodak BioMax MR film (Eastman
Kodak Co., Rochester, NY) along with autoradiographic
[14C] microscale standards (Amersham Life Science Inc.,
Arlington Heights, IL) for 5 days at room temperature.
Specific CRH mRNA hybridization was determined by
comparing the hybridization signal from the antisense with
that of the sense cRNA strand probe.
Autoradiograms from the in situ hybridization studies

were analyzed using the NIH IMAGE program (http://
rsb.info.gov/nih-image). The mean optical density (OD) was
measured in each area of interest and all OD readings were
converted into nCi/g tissue equivalents by means of
standard curves generated using autoradiographic [14C]
microscale standards.
We quantified four sections per animal per region of

interest in both hemispheres. Slides were not emulsion
dipped because autoradiograms provide a good measure of
CRH mRNA expressed in parvocellular neurons of the PVN
without the need for microscopic examination (CRH is not
expressed in any other cell type in the PVN).

CRH-R1- and -R2-binding autoradiography. CRH-R1-
and -R2-binding autoradiography was performed according
to procedures previously described (Skelton et al, 2000).
Briefly, slide-mounted tissue sections were thawed, fixed in
0.1% paraformaldehyde, and then preincubated in 50mM
Tris-HCl, 10mM MgCl2, 2mM EGTA. Then, incubation
occurred with 0.2 nM [125I-Tyr0]sauvagine (NEN, Boston,
MA; specific activity: 2200 Ci/mmol) in 50mM Tris-HCl,
10mM MgCl2, 2mM EGTA, 0.1% bovine serum albumin,
aprotinin (0.04 TIU/ml), and 0.1mM bacitracin. [125I-
Tyr0]sauvagine has high affinity for both CRH-R1
(KD¼ 0.2–0.4 nM) and CRH-R2 (KD¼ 0.1–0.3 nM) (Grigor-
iadis et al, 1996; Primus et al, 1997). Two further sets of
adjacent sections were used: in one set, 1 mM CP-154,526-1
(butyl-[2,5-dimethyl-7-(2,4,6-trimethylphenyl)-7H-pyrro-
lo[2,3-d]pyrimidin-4-yl]-ethylamine; kindly provided by Dr
L Martarello, at Emory University, Atlanta, GA), a selective
CRH-R1 antagonist, was added to the incubation buffer in
order to displace [125I-Tyr0]sauvagine from the CRH-R1
subtype; in the other set of adjacent sections, 1 mM
unlabeled sauvagine (American Peptide Company, Sunny-
vale, GA) was added to the incubation buffer to define
nonspecific binding. Following incubation, all sections were
washed in PBS (1% BSA) and air-dried. Autoradiograms
from receptor-binding studies were analyzed using the NIH
IMAGE program (http://rsb.info.gov/nih-image). All OD
readings were converted into dpm/mg tissue equivalents by
means of standard curves generated using [125I] microscale
standards.
As described above, three consecutive sets of sections

were used for quantification of CRH-R1 and CRH-R2
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binding: (a) sections incubated with [125I-Tyr0]sauvagine,
which represent total binding of this ligand to both CRH-R1
and CRH-R2, (b) sections incubated with [125I-Tyr0]sauva-
gine in the presence of 1 mM CP-154,526-1, a compound that
displaces binding from CRH-R1, therefore representing
binding to CRH-R2, and (c) sections for nonspecific
binding, whose values were subtracted from both sets a
and b. Specific CRH-R1 binding was calculated by
subtracting the specific CRH-R2 binding from the total
[125I-Tyr0]sauvagine binding to both CRH-R1 and CRH-R2.
An average of five sections were measured in each animal
for each region of interest (in both hemispheres) to generate
mean binding values. Only values above 2� standard
deviation from nonspecific binding values were considered
detectable. Representative images of receptor binding are
shown in Figure 1.

AVP and OXT mRNA in situ hybridization histochemistry.
Due to the high expression of both AVP and OXT mRNAs
in the hypothalamic PVN and SON, we focused on these
nuclei; none of the other regions showed detectable
expression levels. Not only the PVN but also the SON is
known to be involved in both emotionality (Engelmann et al,
1994, 1999) and HPA axis regulation (Wotjak et al, 2002).
Prior to hybridization, slides were dehydrated and

air-dried. For hybridization of AVP mRNA, we used a
highly specific 48-base-long oligonucleotide directed against
the last 16 amino acids of the glycoprotein that AVP does
not share with OXT (50 gcagaaggccccggccggcccgtccagctgc-
gtggcgttgctccggtc; Ivell and Richter, 1984; Villar et al,
1994). OXT mRNA was hybridized by using a similarly

specific 48-base long oligonucleotide (50ctcggagaaggcagact-
cagactcagggtcgcaggcggggtcggtgcggcagcc; Ivell and Richter,
1984). The oligonucleotides were labeled using terminal
transferase (TdT, Boehringer, Germany) and [35S]dATP
(NEN DuPont, Germany) and purified by t-RNA (Sigma,
Germany) precipitation. Incubation occurred in a humid
chamber (20 h at 451C) with a radioactivity of 50 000 cpm/
100 ml/slide. After several washes, slides were dehydrated
and air-dried (for detailed description of data analysis, see
below).
To check for the specificity of the oligonucleotide

hybridization, some sections were preincubated with a 50-
fold excess of the cold oligonucleotides before the radio-
actively labeled probes were added. Under these conditions,
no signal was registered within the respective nuclei.

AVP V1a-R binding autoradiography. This analysis was
conducted in brain sections from the same HAB and LAB
males used for AVP and OXT mRNA hybridization
following procedures previously described (Young et al,
1999, 2000). Before incubation, the slides were fixed using
0.1% paraformaldehyde and washed. For competitive
displacement of endogenous AVP and for receptor binding,
slides were incubated (60min, RT) with the AVP V1a-R
antagonist 125I-lin AVP (NEX310, DuPont NEN, Boston,
USA; 200 cpm/ml). After several washes, the slides were air-
dried (for a detailed description of data analysis see below).

Data analysis. In all in situ hybridization and receptor-
binding analyses, the sections were exposed to Kodak
BioMax or �-max MR films (Eastman Kodak Co., Rochester,
NY or Amersham, Germany) for 2–5 days. The radiation-
induced blackening of the nuclear films was determined by
means of image analysis optical software (NIH IMAGE
program; http://rsb.info. gov/nih-image or Optimas 5.2,
Optimas Corporation, Germany). Autoradiograms from in
situ hybridization and receptor-binding studies for AVP,
OXT, and CRH were analyzed using the OD readings which
were then converted into nCi/g or dpm/mg tissue equiva-
lents by means of standard curves generated using either
[14C] or [125I] microscales (Amersham Life Science Inc.,
Arlington Heights, USA). An average of three to six matched
sections were measured in each animal for each region of
interest to generate mean hybridization or binding values.
For CRH, specific mRNA hybridization was determined

by comparing the hybridization signal from the antisense
with that of the sense cRNA strand probe, and data were
adjusted to [14C] standards. For CRH-R1 and -R2 auto-
radiography, the data were adjusted to [125I] standards.
Specific CRH-R2 binding was obtained by subtracting
nonspecific binding from [125I-Tyr0]sauvagine binding in
the presence of 1 mM CP-154,526-1. Specific CRH-R1
binding was calculated by subtracting nonspecific from
the total [125I-Tyr0]sauvagine binding and then subtracting
specific CRH-R2 binding.
For AVP and OXT, specific mRNA hybridization and

receptor binding, respectively, were determined by compar-
ing the hybridization signal of the studied regions with the
background, and data were adjusted to [14C] standards. For
more detailed analysis of AVP expression on cellular level,
slides were dipped in 50% nuclear emulsion (NTB2, Kodak,

CRH receptor autoradiographs

Lateral Septum
a b c

a b c

a b c

PVN

Ventromedial hypothalamus

Figure 1 Representative images of CRH receptor binding at different
levels of the brain (lateral septum, PVN, and ventromedial hypothalamus).
From left to right, each column of the sections represents (a) total
[125I]sauvagine binding to both CRH-R1 and CRH-R2, (b) binding to CRF-
R2 (sections incubated with [125I]sauvagine and the selective CRH-R1
antagonist), and (c) nonspecific binding.
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Germany) and exposed for 48 h. After development and
fixation (Kodak, Germany), the slides were slightly counter-
stained with 1% cresyl violet and covered. The number of
silver grains indicating AVP mRNA expression was counted
in parvocellular neurons (20 cells in two sections per
animal, identified according to their localization within the
PVN, Swanson and Sawchenko, 1983) by an observer blind
to the animals’ specifications. Spotted magnocellular
neurons within the parvocellular part of the PVN, as
identified by their size, were excluded.

In vivo microdialysis. At 2 days after surgery, at 0800, the
microdialysis probe was connected to the microinfusion
pump (TSE, Bad Homburg, Germany) and perfused at a rate
of 200 ml/h with sterile Ringer’s solution (Fresenius,
Germany, pH 7.4) for 2 h to establish an equilibrium
between inside and outside of the dialysis membrane, while
the rats were left undisturbed (for a detailed description, see
Neumann et al, 1993; Landgraf et al, 1995b; Wotjak et al,
1996).
Seven consecutive 30-min microdialysates were collected

in Eppendorf tubes, prepared with 10 ml of 0.01 N HCl
(Merck, Germany) and snap-frozen on dry ice immediately
after removal from the animal. Following two basal dialysate
collections, during ongoing microdialysis, rats were ex-
posed to an open arm of the EPM for 10min and then
returned into their home cage. After collection of two
further dialysates, at the beginning of the sixth sample, the
animals were forced to swim for 10min while microdialysis
continued and, thereafter, one further ‘undisturbed’ collec-
tion was obtained.
After the experiment, a functional control was performed

as described by Neumann et al (1993). Briefly, three more
consecutive dialysates were collected. During the second
dialysis interval, NaCl-hypertonic Ringer’s solution (0.7M)
was perfused and only rats that showed a pronounced
‘rebound’ effect in the third dialysate were included for
further analysis. In addition to providing a functional index
of probe placement, this test sheds some light on the
releasable pool of AVP and OXT within the dialyzed area.
In a further follow-up experiment, again basal and

posthypertonic samples were collected and both AVP and
OXT release were measured in the same dialysates.

Administration of an AVP V1-R antagonist by inverse
microdialysis. For local delivery of a highly selective AVP
V1-R antagonist (d(CH2)5Tyr(Me)AVP, provided by Dr M
Manning, Toledo, USA), a microdialysis probe was im-
planted adjacent to both PVNs (Figure 2) 2 days prior to
inverse microdialysis. At 30min prior to anxiety testing on
the EPM, rats were infused (dialysis rate: 200 ml/h) with
either vehicle (sterile Ringer’s, n¼ 9) or AVP V1-R
antagonist solution (delivery into the PVNs during a 30-
min interval ca 5 ng, diffusion area approx. 0.5mm3,
Engelmann et al, 1992; n¼ 8).

Histological verification of the microdialysis probe place-
ment. At the end of the experiments, the microdialyzed
animals were killed by an over-dose of halothane. The
brains were removed, snap-frozen in dry ice-chilled
N-methylbutane (Roth, Germany), and stored at �201C
until sectioning with a cryocut (Microm HM 500, Germany).

Cresyl violet-stained coronal sections of the brains (25 mm)
were used for reconstruction of the placement of the
microdialysis probes (example given in Figure 2).

Radioimmunoassays for AVP and OXT. Only successfully
implanted rats with (i) the microdialysis probe placed
within or adjacent to the hypothalamic nucleus (histology
not shown) and (ii) a strong rise in neuropeptide release in
response to hypertonic medium were analyzed for neuro-
peptide release upon stressor exposure.
AVP and OXT contents in the dialysates were estimated in

lyophilized samples by sensitive and specific radioimmuno-
assays (minimal detection limit: 0.03 pg/sample; intra- and
interassay variations were between 7 and 10%, and 9 and
13%, respectively). Crossreactivities of the antisera with
related peptides (including AVP and OXT, respectively)
were o0.7% (Landgraf et al, 1995b).

Statistical Analysis

Data are presented as group means7 SEM. Statistics were
performed by means of computer software (GB-Stat V6.0,
Dynamic Microsystems, USA).
mRNA-expression and/or selective receptor binding of

CRH under basal conditions and after stress exposure were
statistically analyzed using a Mann–Whitney U-test (HAB vs
LAB) under separate conditions since they were estimated
in two different analytical sets.
Comparisons of HAB and LAB males with respect to basal

and poststress mRNA expression of AVP and OXT were
performed using a randomized two-way ANOVA (factors
rat line and treatment). Line differences in AVP V1a-R
binding were compared using the Mann–Whitney U-test
under basal and poststress conditions, respectively.
AVP and OXT contents in microdialysates were calculated

using a two-way ANOVA corrected for repeated measures
(factors rat line� time), and in order to note subtle line
differences, detailed by using the Mann–Whitney U-test for

Figure 2 Photomicrograph of a histological preparation (25 mm) of the
hypothalamic PVN implanted with a microdialysis probe for retrodialytic
administration of an AVP V1-R antagonist. The arrowhead points out the
remaining lesion after removal of the probe showing the correct placement
attaining both PVNs. OC: optic chiasma, 3V: third ventricle.
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basal levels (dialysate 1) and stress-induced release (ratio:
swim/preswim, ie dialysates 6/5).
The behavioral data obtained in the EPM and during

forced swimming in HABs after microdialysis administra-
tion of the AVP V1-R antagonist into the PVN were
processed with the Mann–Whitney U-test. po0.05 was
considered statistically significant.

RESULTS

Corticotropin-releasing hormone

Basal mRNA expression of CRH (Table 1, Figure 3a). The
basal expression of CRH mRNA was significantly lower in
the bed nucleus of the stria terminalis (BNST, po0. 05 vs
LAB) and tended to be lower in the central amygdala
(p¼ 0.08 vs LAB) of HABs. In the other areas studied,
including the PVN (Figure 3a), no line differences were
detected.

Basal and poststress CRH-R1 binding (Table 2). In all the
brain areas studied, the binding of the selective ligand to

CRH-R1 was similar in both lines either under basal
conditions or 30min after a 10-min open-arm exposure.
Only in the central amygdala, CRH-R1 binding tended to be
reduced in HABs under basal conditions (p¼ 0.08 vs LAB).

Basal and poststress CRH-R2 binding (Table 3). Selective
CRH-R2 binding within the PVN was significantly higher in
HABs than in LABs under basal conditions (po0.01), but
not poststress. The ventromedial hypothalamus showed
higher CRH-R2 binding under both conditions (po0.05).
The central, but not basolateral, amygdala of HABs showed
a tendency towards higher CRH-R2 binding under basal
conditions (p¼ 0.08), which reached significance (po0.05)
after stressor exposure. Further, the dorsal raphe revealed a
tendency towards higher CRH-R2 binding in HAB rats after
stress (p¼ 0.06).

AVP and OXT

Basal and poststress mRNA expression of AVP (Figures
3–5). Within the PVN, significant line-specific differences
were detectable (two-way ANOVA, line F1,19¼ 6.28, p¼ 0.02;
treatment F1,19¼ 0.022, p¼ 0.88; interaction F1,19¼ 1.23,
p¼ 0.28) with HABs showing higher AVP expression than
LABs (Figures 3b and 4a). Over-expression of AVP in the
PVN of HABs occurred predominantly under basal condi-
tions without showing a further elevation 2 h after open-arm
exposure. Analysis of the PVN subdivisions (Swanson and
Sawchenko, 1983), particularly under basal conditions,
revealed a higher AVP expression in the predominantly
magnocellular region of the PVN of HABs (two-way ANOVA,
line F1,19¼ 5.39, p¼ 0.04; treatment F1,19¼ 3.43, p¼ 0.09;
interaction F1,19¼ 2.87, p¼ 0.12; Figure 5a). Since expression
in the predominantly parvocellular part was below the
detection limit of the gray-scale method, we analyzed basal
AVP mRNA labeling in the parvocellular somata by counting
the number of silver grains per cell in dipped slides. This
revealed an enhanced AVP expression in HAB rats (two-way
ANOVA, line F1,19¼ 5.61, p¼ 0.03; treatment F1,19¼ 14.6,
p¼ 0.001; interaction F1,19¼ 6.49, p¼ 0.02; Figure 5b). Silver
grains in magnocellular neurons were found to be too densely
packed to allow counting. After stressor exposure, no line-
specific differences were found in either PVN subdivision.
In contrast to the PVN, the mRNA expression of AVP

within the SON of male HAB and LAB rats did not differ
under both basal and poststress conditions (two-way
ANOVA, line F1,19¼ 0.053, p¼ 0.82; treatment F1,19¼ 0.15,
p¼ 0.70; interaction F1,19¼ 0.86, p¼ 0.36; Figure 4b).

Basal and poststress mRNA expression of OXT. In contrast
to AVP, the expression patterns of OXT mRNA within the
PVN of HAB and LAB rats failed to reveal line-specific
differences (two-way ANOVA, line F1,19¼ 0.068, p¼ 0.80;
treatment F1,19¼ 15.7, p¼ 0.0008; interaction F1,19¼ 2.96,
p¼ 0.10) both under basal conditions (HAB: 89.67 4.4 nCi/
mg, LAB: 73.37 14.1 nCi/mg) and 2 h after exposure to
an open arm of the EPM (HAB: 1087 7.7 nCi/mg, LAB:
1207 3.4 nCi/mg).

Basal and poststress. AVP V1a-R binding (Table 4).
Binding of the selective ligand to the AVP V1a-R subtype
was detectable in most of the brain areas studied. However,

Table 1 CRH mRNA Expression (OD units) Within Brain Areas
in Male HAB and LAB Rats Under Basal Conditions

HAB (n¼ 5) LAB (n¼5) p-Values

PVN 56.77 1.07 49.67 3.03 0.12

BNST 24.67 4.34 38.17 1.60 0.047

Barrington nucleus 18.07 3.93 12.97 2.23 0.60

Central amygdala 26.27 5.03 36.57 2.23 0.08

Raphe nucleus 13.87 3.97 12.77 2.61 0.75

Data are means7 SEM.

CRH AVP

HAB HAB

LAB LAB

a b

Figure 3 Representative images of (a) CRH and (b) AVP mRNA
expression in the PVN of HAB and LAB rats under basal conditions.
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V1a-R binding was not significantly different between the
lines under either basal conditions or 2 h after a 10-min
open-arm exposure. In both the PVN and SON, binding was
very low or not detectable.

Basal and stress-induced release of AVP and OXT within
the PVN (Figure 6). Basal and stimulated AVP and OXT
release within the PVN of HAB and LAB rats were estimated
by microdialysis.
Exposure to an open arm of the plus-maze failed to alter

both AVP and OXT release in either line. In contrast, in
both lines 10min of forced swimming induced a significant
increase in either AVP (two-way ANOVA over dialysates

Table 2 Binding at CRH-R1 (dpm/mg) Within Brain Areas of Male HAB and LAB Rats Under Basal Conditions and 30min Poststress
(10-min Open-Arm Exposure)

Basal Poststress

HAB (n¼ 5) LAB (n¼ 5) p-Values HAB (n¼7) LAB (n¼5) p-Values

Parietal cortex 10917 50.8 10787 36.1 p¼ 0.75 16417 155 14597 340 p¼ 0.29

PVN 2137 29.6 2187 38.6 p¼ 0.60 1747 51.7 1607 63.3 p¼ 0.57

Basolateral amygdala 8557 80.5 8747 30.5 p¼ 0.76 12277 102 11057 197 p¼ 0.37

Central amygdala 4607 33.8 5417 27.6 p¼ 0.08 8787 66.9 7637 133 p¼ 0.29

Data are means7 SEM.

Table 3 Binding at CRH-R2 (dpm/mg) Within Brain Areas of Male HAB and LAB Rats Under Basal Conditions and 30min Poststress
(10-min Open-Arm Exposure)

Basal Poststress

HAB (n¼ 5) LAB (n¼ 5) p-Values HAB (n¼ 7) LAB (n¼5) p-Values

Lateral septum 7457 67.5 8057 62.2 p¼ 0.33 9957 69.5 9687 45.9 p¼ 0.37

PVN 5537 42.9 3467 42.9 p¼ 0.009 3587 32.0 3117 34.0 p¼ 0.46

Ventromedial hypothalamus 7327 45.2 5777 41.6 p¼ 0.016 10687 74.5 6457 186 p¼ 0.042

Basolateral amygdala 2727 27.4 2657 30.2 p¼ 0.60 68.57 9.50 60.57 13.4 p¼ 0.46

Central amygdala 3907 48.8 3617 13.9 p¼ 0.08 1927 17.6 1527 22.7 p¼ 0.042

Dorsal raphe 6697 10.7 6237 65.8 p¼ 0.47 5047 105 2937 46.4 p¼ 0.062

Data are means7 SEM.
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SON of male HAB and LAB rats under basal conditions and 2 h poststress
(10-min exposure to an open arm of the EPM). Data are means+SEM.
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(estimated via nuclear films) or (b) parvocellular (number of silver grains
within somata indicating labeled mRNA) PVN neurons of male HAB and
LAB rats under basal conditions or 2 h poststress (10-min exposure to an
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1–7, factor time: F6,72¼ 5.80, po0.0001, rat line: F1,12¼ 2.33,
p¼ 0.15) or OXT (two-way ANOVA over dialysates 1–7,
factor time: F7,98¼ 11.0, po0.0001, rat line: F1,14¼
0.15, p¼ 0.71, interaction: F7,98¼ 0.40, p¼ 0.90) release.
While OXT release within the PVN failed to show any
significant line difference, AVP release was higher in the
PVN of HAB rats under basal and stimulated conditions. In
more detail, the comparison between the first dialysates
only revealed an elevated basal release of AVP in HABs
(p¼ 0.028). Similarly, the rise in AVP from the fifth
(undisturbed) to the sixth (forced swimming) dialysate
was significantly higher in HABs (ratio: HAB 0.297 0.08,
LAB 0.0647 0.04, p¼ 0.02).
After the experiment, the release pattern of AVP upon

microdialysis with a hypertonic medium revealed a
tendency towards a higher rise in AVP from the first to
the third dialysate in HABs (ratio: HAB 33.37 9.2, LAB
14.27 5.9, p¼ 0.057), potentially indicating a higher
releasable pool of AVP in the PVN of HAB animals. Again,
OXT failed to reveal divergent release patterns between
HAB and LAB animals after microdialysis with a hypertonic
medium (ratio: HAB 21.57 5.1, LAB 25.57 6.7, p¼ 0.75),
indicating no difference in the releasable pool of PVN OXT
between the lines.
The results representing hyper-release of AVP, but not

OXT, under basal and posthypertone conditions in HAB rats

were replicated in a follow-up study measuring AVP
(significant line difference, HAB4LAB, basal p¼ 0.011,
posthypertonic p¼ 0.013) and OXT (no line difference, basal
p¼ 0.67, posthypertonic p¼ 0.39) in the same microdialysates
(same animals, same timepoints, Figure 6 right) reinforcing
the previous result of an enhanced intra-PVN release of AVP
accompanying the enhanced AVP mRNA expression.

Administration of an AVP V1-R antagonist via inverse
microdialysis (Figure 7). Administration of the V1-R
antagonist via inverse microdialysis into the PVN (histo-
logical example see Figure 2) tended to reduce the anxiety-
related behavior of HAB males on the EPM. Both percent
entries into (p¼ 0.05) and percent time spent on (p¼ 0.05)
the open arms of the maze tended towards being elevated by
antagonist treatment. The total number of closed-arm
entries, indicative of locomotor activity, remained un-
changed after antagonist treatment (p¼ 0.49). Intra-PVN
administration of the V1-R antagonist shifted the behavior
of HAB males in the forced swim test toward a more active
coping style as shown by reduced floating (po0.05). In
contrast, latency to floating (control 55.67 13.5 s, antago-
nist 88.97 28.6 s, p¼ 0.60), duration of swimming (control
5097 7.3 s, antagonist 5157 12.5 s, p¼ 0.34), and strugg-
ling (p¼ 0.37) were not changed by the V1-R antagonist
treatment.

Table 4 Binding of the Selective AVP V1a-R Ligand 125I-lin-AVP (nCi/mg) in Selected Brain Areas of Male HAB and LAB Rats Under Basal
Conditions and 2 h Poststress (10-min Open-Arm Exposure)

Basal Poststress

HAB (n¼ 5) LAB (n¼ 5) p-Values HAB (n¼ 5) LAB (n¼4) p-Values

Posterior septum 70.37 25.1 45.27 4.84 p¼ 0.40 32.07 4.38 33.07 2.07 p¼ 0.46

Medial septum 1207 43.6 82.27 24.3 p¼ 0.08 48.27 6.86 49.17 3.82 p¼ 0.46

BSTLD 1237 19.8 1207 17.3 p¼ 0.60 1267 7.40 1127 8.69 p¼ 0.14

BSTLI 81.87 13.2 77.87 5.88 p¼ 0.60 1037 11.4 88.17 8.98 p¼ 0.14

Amygdala 85.87 8.43 84.67 7.35 p¼ 0.60 88.97 3.25 88.47 4.02 p¼ 0.62

SON Not detectable Not detectable

SCN 27.37 2.09 25.77 1.73 p¼ 0.35 25.47 0.55 24.47 0.80 p¼ 0.33

AVVL 29.07 1.29 28.57 1.45 p¼ 0.68 30.17 1.09 27.27 1.37 p¼ 0.05

VL 74.47 10.8 88.77 4.97 p¼ 0.25 84.97 6.10 85.57 11.0 p¼ 0.71

Parathenial nucleus 1017 9.86 93.57 9.34 p¼ 0.33 1157 3.51 1267 10.8 p¼ 0.18

VPPC 44.97 2.88 36.67 5.24 p¼ 0.14 46.87 2.26 43.07 4.19 p¼ 0.71

PVN 19.27 1.99 18.97 0.68 p¼ 0.46 19.67 0.59 18.47 0.95 p¼ 0.22

Thalamic cortex right 18.77 0.78 18.87 1.43 p¼ 0.83 20.97 1.46 20.97 1.50 p¼ 0.81

Thalamic cortex left 22.37 1.49 21.17 1.08 p¼ 0.53 25.17 2.17 24.47 2.18 p¼ 0.54

Hippocampal cortex right 23.77 1.00 25.47 1.28 p¼ 0.35 25.07 1.43 27.17 1.71 p¼ 0.14

Hippocampal cortex left 19.67 0.42 20.07 0.45 p¼ 0.40 22.87 1.05 23.87 2.28 p¼ 0.71

Hippocampus 24.67 1.65 23.27 1.15 p¼ 0.40 24.57 0.64 23.97 0.70 p¼ 0.33

VPM 94.87 9.97 84.07 7.75 p¼ 0.25 1037 5.69 1037 9.48 p¼ 0.46

CM 1017 9.86 93.57 9.34 p¼ 0.33 1137 3.60 1237 10.9 p¼ 0.27

AHP 81.17 8.26 70.67 5.34 p¼ 0.30 88.47 6.54 66.47 5.22 p¼ 0.028

Data are means7 SEM.
Abbreviations according to Paxinos and Watson (1998): AHP: anterior hypothalamic area, posterior part; AVVL: anteroventral thalamic nucleus, ventrolateral part;
BSTL LD/LI: bed nucleus of the stria terminalis, lateral division, dorsal part/intermediate part; CM: central medial thalamic nucleus; PVN: paraventricular nucleus; SCN:
suprachiasmatic nucleus; SON: supraoptic nucleus; VL: ventrolateral thalamic nucleus; VPM: ventral posteromedial thalamic nucleus; VPPC: ventral posterior thalamic
nucleus, parvicellular part.
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DISCUSSION

In this series of experiments, we demonstrated altered
neuropeptide expression, intracerebral release, and binding
patterns, which are likely to underlie hyper-emotionality
and HPA axis hyper-reactivity in rats bred for high trait
anxiety (HABs). In these animals, reduced CRH mRNA
expression was shown within the BNST. While the binding
to CRH-R1 failed to show significant differences between
the lines, CRH-R2 binding was significantly elevated in the

PVN, ventromedial hypothalamus, and central amygdala of
HABs. In both basal and poststress conditions, AVP mRNA
expression was selectively elevated within the PVN of HAB
compared to LAB rats. Further, HAB rats showed an
elevated release of AVP within the PVN under basal
conditions, after forced swimming, and a tendency towards
elevated release after hypertonic stimulation. In contrast,
the measurement of OXT expression and release in the same
animals failed to reveal any line differences. While binding
to the AVP V1a-R subtype was not line-divergent in any
brain area studied, infusion of a V1-R antagonist directly
into the PVN of HABs resulted in a trend towards reduced
anxiety and a significantly enhanced active stress coping
indicative of antidepressive effects. Thus, particularly AVP
over-expression and over-release within the PVN seem to be
critically involved in both behavioral and neuroendocrine
phenomena linked to trait anxiety/depression.

Corticotropin-Releasing Hormone

Impact on HPA axis (re)activity. CRH expressed within the
PVN and transported to the anterior pituitary stimulates the
HPA axis as an ACTH secretagogue (Rivier and Vale, 1983;
Plotsky, 1991). Accordingly, in conditions of HPA hyper-
reactivity, for example in depressed patients (Raadsheer
et al, 1994) or in rats after chronic stress (Aguilera, 1994;
Herman et al, 1995; Ma et al, 1999), an enhanced expression
of CRH was shown within the PVN. Here, both CRH mRNA
expression and CRH-R1 binding (Tables 1 and 2) failed to
show significant line-specific differences, thus making the
critical involvement of CRH expression and CRH-R1
binding in HPA axis hyper-reactivity of HABs rather
unlikely. A difference in pituitary CRH-R1 between the
lines, contributing to HPA axis hyper-reactivity can largely
be excluded since ACTH secretion into the blood of HABs
and LABs failed to show differential sensitivity to i.v. CRH
(Liebsch et al, 1998b), suggesting that this receptor subtype
does not play a critical role in neuroendocrine aberrations
associated with trait anxiety.
In contrast to CRH-R1, CRH-R2 binding was elevated in

the PVN of HABs (Table 3) and might mediate a stimulatory
effect of intra-PVN released CRH on HPA axis function
(Jezova et al, 1999). Since there are CRH projections from
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the BNST to the PVN, which could regulate CRH synthesis
in the PVN (Champagne et al, 1998), the decreased
CRH mRNA expression within the BNST of HABs would
have additional effects on the PVN, which remain to be
shown.

Impact on anxiety-related behavior and stress coping.
Administered into the central amygdala before exposure to
the EPM, CRH reduced exploration independent of HPA
axis activation (Merlo Pich et al, 1993). However, in the
same area (Tazi et al, 1987) and within the BNST (Nijsen
et al, 2001), CRH administration seems to facilitate
locomotion in a familiar environment. Thus, the relatively
high CRH expression both in the central amygdala
(p¼ 0.08) and the BNST (po0.05, Table 1) of LABs under
basal conditions might lead to enhanced local release and
may thus be related to their predominantly active living
style detected by home cage observations (Liebsch et al,
1998b; Henniger et al, 2000). Further, regarding the
presence of CRH pathways from the central amygdala to
the BNST (for a review, see Steckler and Holsboer, 1999),
the increased CRH mRNA expression in the central
amygdala of LABs may also precede an increased CRH
release in the BNST.
While the differential release of serotonin in the PVN and

dorsal hippocampus of HABs and LABs points towards a
contribution of serotonergic neurotransmission to diver-
gent HPA axis reactivity and emotionality (Umriukhin et al,
2003), no significant line-specific differences in CRH
expression were found in the raphe nucleus, the origin of
the serotonergic system (Price et al, 1998).
The effects of CRH on emotional behavior have been

reported to be predominantly mediated by the CRH-R1
subtype (Liebsch et al, 1995, 1999; Heinrichs et al,
1997, 2002; Kehne et al, 2000). In our study, none of the
examined areas revealed line differences in CRH-R1 binding
(Table 2), which provides evidence that the CRH-R1 is not
causally involved in trait anxiety. However, since adminis-
tration of the selective CRH-R1 antagonist R121919 had
pronounced anxiolytic/antidepressive effects in HABs only
(Keck et al, 2001), differential postreceptor mechanisms
through which the CRH-R1 subtype could contribute to this
hyper-anxiety cannot be excluded. Recent reports also
describe participation of the CRH-R2 in mediating anxio-
genic effects (Radulovic et al, 1999, 2000). This interpreta-
tion is further supported by the observed reduction of
anxiety in the EPM after i.c.v. administration of the CRH-R2
selective antagonist ASV-30 (Takahashi et al, 2001),
although predominantly anxiolytic properties of this
receptor subtype were described so far (Bale et al, 2000;
Kishimoto et al, 2000). Further, the CRH-R2 is postulated
to play a role in stress coping (Liebsch et al, 1999). As
our rat lines differ in this behavioral parameter, the
higher binding of CRH-R2 within the PVN, the amygdala,
and the ventromedial hypothalamus of HABs (Table 2)
should attract further attention to the behavioral signifi-
cance of this receptor subtype.

Arginine-8-Vasopressin

Impact on HPA axis (re)activity. At the anterior pituitary
level, AVP originating predominantly from parvocellular

PVN neurons and released into the portal blood reinforces
the stimulation of ACTH release by CRH (Plotsky, 1991).
The upregulation of AVP mRNA expression, particularly
under basal conditions, within parvocellular somata of the
PVN of HABs (Figure 5) may precede the elevated AVP
secretion into the pituitary portal blood that is likely to
promote HPA axis hyper-reactivity to stressors. Accord-
ingly, the pathological outcome of the combined dexa-
methasone suppression/CRH challenge test found in HABs
could be brought back to normal by i.v. administration of a
selective AVP V1-R antagonist (Keck et al, 2002). Although
not confirmed by the amount of silver grains in single cells,
our images show a distinct upregulation of basal AVP
mRNA expression also in the magnocellular subdivision of
the PVN of HABs (Figure 5a), indicating a causal
involvement of both parvo- and magnocellular PVN AVP
neurons in the HAB phenotype. Supporting this notion,
antidepressive paroxetine treatment normalized the hyper-
expression of AVP within the entire PVN, accompanying its
behavioral and neuroendocrine actions (Keck et al, 2003).
In contrast to its stimulatory action on ACTH release at
the pituitary level, AVP released within the PVN was
described to provide a negative tonus on HPA axis activity
(Makara et al, 1996; Wotjak et al, 1996). Accordingly, the
elevated AVP release found in the PVN of HABs under
basal conditions (Figure 6a) may exert a tonic inhibition
on the HPA axis, which might otherwise be chronically
elevated due to exaggerated AVP secretion at the level
of the median eminence. However, since the PVN is an
extremely heterogeneous nucleus containing several types
of neurosecretory neurons, it remains to be shown whether
the amount of AVP microdialyzed here truly reflects the
portion of the neuropeptide released to become involved in
differential HPA axis regulation.
Open-arm exposure has been shown to increase the

activity of the HPA axis, with a stronger effect in HABs than
in LABs (Landgraf et al, 1999), but this stimulus failed to
increase intra-PVN release of AVP in both lines. In HABs,
this lack in stimulation might be explained by the enhanced
basal intra-PVN release of AVP prior to stressor exposure.
As suggested by Weiss et al (1992), the response to a
challenge is reduced proportionally if a system is operating
at a higher basal tone, making the system relatively
insensitive to stressor exposure. Our in situ hybridization
data favor this hypothesis, since only LABs responded to
stress with an increase in AVP mRNA expression in the
PVN (Figures 4a and 5), whereas HABs already showed
enhanced basal expression that was not further elevated by
the weak stressor of open-arm exposure. However, even
LABs failed to increase significantly intra-PVN release of
AVP after open-arm exposure, suggesting that the stimulus
intensity of open-arm exposure is generally too weak to
stimulate intra-PVN release of AVP. Given that AVP may
provide a negative tonus to HPA axis reactivity, the lack of
an AVP increase during open-arm exposure might permit
the HPA axis of HABs to respond to this stimulus with an
enhanced ACTH secretion (Landgraf et al, 1999). According
to this hypothesis, the increase of AVP in HABs during
forced swimming (Figure 6a) might exert a more effective
inhibition of the HPA axis response, adjusting it to a similar
level as in LABs. Indeed, similar ACTH and corticosterone
responses to forced swimming in both lines were shown by
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Liebsch et al (1998a) and Neumann et al (1998). Concerning
V1a-R binding within the PVN, no line differences could be
shown either under basal or stimulated conditions (Table 4),
suggesting that line-specific divergences in neuroendocrine
and behavioral parameters are due to differential intra-
cerebral release patterns rather than to differences in V1a-R
binding in the PVN or other brain areas.

Impact on anxiety-related behavior and stress coping.
Released centrally and interacting with V1a-R (Raggenbass
et al, 1998) and V1b-R (Griebel et al, 2002), AVP is well
known to be involved in multiple behavioral processes
including cognition and emotionality (De Wied et al, 1988;
Landgraf, 1995; Landgraf et al, 1995a; Engelmann et al,
1996; Liebsch et al, 1996; Makara et al, 1996; Young, 2002).
In all the brain areas studied here, V1a-R binding failed to
differentiate between the lines, suggesting that a critical
involvement of this receptor subtype in trait anxiety/
depression is rather unlikely. Only in the septum, where
AVP and its V1a-R were reported to promote learning and
memory capacities, and stress coping strategies (Landgraf
et al, 1995a; Engelmann et al, 1996; Ebner et al, 1999), the
HAB rats showed enhanced receptor binding (Keck et al,
2003). Albeit in the present study this result was reproduced
in tendency only (Table 4), this finding is in line with our
recent data indicating an improved short-term memory in
HABs in the social discrimination test (Landgraf and
Wigger, 2002). The same was true for rats with an over-
expression of the vole V1a receptor in their septum by viral
vector-mediated transgene transfer (Landgraf and Wigger,
2003). Since the septum was also reported to be involved in
the expression of anxiety-related behavioral features (Land-
graf et al, 1995a), future studies will appoint the contribu-
tion of AVP released and bound within this region to hyper-
anxiety/depression in HAB rats.
In the present study, we used inverse microdialysis for

bilateral administration of a V1-R antagonist directly into
the PVN. This approach was established to avoid an acute
(and more stressful) injection and to deliver an efficacious
amount of the antagonist continuously (Engelmann et al,
1992), thus blocking the effect of intra-PVN released AVP
in this way. Compared to controls, the anxiety-related
behavior of antagonist-treated HAB rats tended to be
reduced (Figure 7a), indicating an anxiogenic effect of
AVP released within the PVN. Further, depression-like
behavior was significantly reduced upon treatment
(Figure 7b), suggesting that AVP, in addition to its
neuroendocrine effects, is likely to trigger behavioral
consequences in this hypothalamic area. Convincingly,
long-term treatment of HAB rats with the antidepressant
drug paroxetine (Keck et al, 2002) resulting in both
normalization of the dexamethasone/CRH test and reduc-
tion of depression-like behavior in the forced swim test was
accompanied by normalization of AVP over-expression in
the PVN, thus providing further evidence supporting the
critical involvement of AVP in indices of neuroendocrine
and behavioral pathology in HABs. Noteworthy, recent
results in HAB-M/LAB-M mice bred in our laboratory
(Krömer et al, unpublished) also showed a remarkable over-
expression of AVP in the PVN of anxious/depressive mice
(Wigger et al, unpublished) similar to the data gained in
anxious/depressive HAB rats as reported here.

Oxytocin

Centrally released OXT has recently been reported to
contribute to basal and stress-induced regulation of the
HPA axis (Gibbs, 1986; Neumann et al, 2000a, b) as well as
of anxiety-related behavior (Neumann et al, 2000b; Bale
et al, 2001) and was, therefore, included here as one of the
neuropeptides potentially involved in neuroendocrine and
behavioral differences between HAB and LAB rats. Similar
to AVP, intra-PVN OXT release was not triggered by open-
arm exposure, whereas it was similarly stimulated in both
lines by forced swimming (Figure 6b). In contrast to the
AVP system, both mRNA expression and intranuclear
release of OXT within the PVN were similar in both lines
under either condition, making an involvement of intra-
PVN OXT in line-divergent HPA axis regulation rather
unlikely.

Perspective

The data obtained in this study reveal an enhanced activity
of the AVP system in the hypothalamic PVN of male HAB
animals, suggesting that AVP rather than CRH or OXT plays
a critical role in behavioral and neuroendocrine phenomena
linked to trait anxiety/depression. More specifically, AVP
mRNA over-expression in the parvocellular PVN of HAB
rats precedes (i) elevated intra-PVN release of AVP
resulting in enhanced anxiety/depression-related behavior
and (ii) elevated AVP secretion into the pituitary portal
blood resulting in HPA axis hyper-reactivity among other
roles. The behavioral and neuroendocrine phenotyping of
HAB and LAB animals thus provides compelling evidence
for a critical and multiple involvement of AVP in anxiety-
related behavior. Based on differential phenotyping, future
work will focus primarily on the AVP gene as a candidate
gene underlying trait anxiety/depression. Preliminary ap-
proaches have revealed single nucleotide polymorphisms
(SNPs) in the promoter region of the AVP gene of HAB, but
not LAB, rats, whereas the CRH gene failed to reveal any
differences (Murgatroyd et al, unpublished). Nevertheless,
there are also differences in the CRH system between HAB
and LAB rats, particularly with respect to CRH mRNA
expression in the central amygdala and the BNST, as well as
differences in CRH-R2 density, which altogether could
contribute to the different emotionality of the two animal
lines. Thus, studying hypothalamic neuropeptide systems
and their involvement in trait anxiety in more detail might
provide deeper insights into the neurobiological mechan-
isms underlying anxiety disorders and depression as a
prerequisite for the development of improved therapeutic
strategies.
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