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Fluoxetine, a selective serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitor, is used widely to treat depression and related

disorders. By inhibiting presynaptic 5-HT reuptake, fluoxetine is thought to act by increasing 5-HT in the synaptic cleft, thus 5-HT binding

to postsynaptic 5-HT2A/2C receptors. These receptors can be coupled via a G-protein to phospholipase A2 (PLA2), which when activated

releases the second messenger arachidonic acid from synaptic membrane phospholipids. To image this activation, fluoxetine (10mg/kg)

or saline vehicle was administered i.p. to unanesthetized rats, and regional brain incorporation coefficients k* of intravenously injected

radiolabeled arachidonic acid were measured after 30min. Compared with vehicle, fluoxetine significantly increased k* in prefrontal,

motor, somatosensory, and olfactory cortex, as well as in the basal ganglia, hippocampus, and thalamus. Many of these regions

demonstrate high densities of the serotonin reuptake transporter and of 5-HT2A/2C receptors. Brain stem, spinal cord, and cerebellum,

which showed no significant response to fluoxetine, have low densities of the transporters and receptors. The results show that it is

possible to image quantitatively PLA2-mediated signal transduction in vivo in response to fluoxetine.
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INTRODUCTION

Fluoxetine is widely used to treat depression, obsessive–
compulsive disorder, panic disorder, and bulimia (Fuller,
1995). It is a selective serotonin (5-hydroxytryptamine,
5-HT) reuptake inhibitor, enhancing postsynaptic seroto-
nergic neurotransmission by increasing the concentration
of 5-HT in the synaptic cleft (Fuller and Wong, 1977; Wong
et al, 1995).
Acute administration of fluoxetine to rodents elicits

anxiogenic effects in social interaction and maze tests (Kurt
et al, 2000; To et al, 1999), potentiates defensive reactions
such as flight and biting (Griebel et al, 1995), and
potentiates amphetamine-induced locomotor activity (Sills
et al, 1999). Acute drug also stimulates secretion of pituitary
ACTH and adrenal corticosterone (Dinan, 1996; Li et al,
1993). It triggers transcription of the gene encoding the
corticotrophin-release factor and its type 1 receptor (Torres

et al, 1998), thus affecting the hypothalamic–pituitary–
adrenal axis that is considered hyperactive in depressed
patients (Leonard, 2001).
Acute administration of fluoxetine also exerts inhibitory

effects. It reduces spontaneous motor activity in 6- to 8-
month-old rats, and to a lesser extent in aged rats (Stanford
et al, 2002). It reduces regional cerebral metabolic rates for
glucose (rCMRglc) in awake rats (Freo et al, 2000) as well as
in humans (Cook et al, 1994). Similar reductions in rCMRglc

in rats have been noted in response to the 5-HT2A/2C

receptor agonist (7 )-2,5-dimethoxy-4-iodophenyl-2-ami-
nopropane (DOI) (Freo et al, 1991).
5-HT2A/2C receptors can be coupled via G-proteins to

phospholipase A2 (PLA2) (Berg et al, 1998; Felder et al,
1990; Kim et al, 1999; Qu et al, in press), which when
activated will release arachidonic acid (20:4 n-6) from the
stereospecifically numbered (sn)-2 position of phospholi-
pids (Axelrod, 1990). Both arachidonate and its eicosanoid
metabolites are important second messengers (Fitzpatrick
and Soberman, 2001). Much of the released arachidonate is
not metabolized to eicosanoids, however, but rapidly re-
esterified into synaptic membrane phospholipids, together
with arachidonate derived from the plasma. The re-
esterification process can be imaged in unanesthetized rats
by injecting radiolabeled arachidonic acid intravenously
following drug, and measuring its regional brain incorpora-
tion with quantitative autoradiography (Chang et al, 1997;
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DeGeorge et al, 1991; Jones et al, 1996; Rapoport, 2001;
Robinson et al, 1992).
In this regard, we reported that radiolabeled arachidonate

could be used to image brain PLA2 activation in rats
administered the 5-HT2A/2C receptor agonist, DOI (Qu et al,
2001a). Significant increases in tracer incorporation, noted
in brain areas with high densities of 5-HT2A/2C receptors,
could be blocked by pretreatment with the 5-HT2 antagonist
mianserin. The increases were considered to follow the
binding of DOI to 5-HT2A/2C receptors, and activation of the
PLA2 to which these receptors are coupled.
We thought it of interest to see if fluoxetine also would

increase incorporation of labeled arachidonate into the
brain, as might be expected from its ability to increase 5-HT
in the synaptic cleft and thus 5-HT occupancy of 5-HT2A/2C

receptors (see above). To test this expectation, we decided
to measure the incorporation of radiolabeled arachidonate
from plasma into the brain of unanesthetized rats, 30min
after giving fluoxetine 10mg/kg i.p. At 30–60min, this dose
increases 5-HT levels in the rat brain, and the levels remain
elevated for 3 h (Guan and McBride, 1988). Additionally,
after 30min, fluoxetine at doses of 4mg/kg and 40mg/kg
i.p., respectively, has been reported to reduce rCMRglc in 28
of 66 regions (mean global decrease was 23%) and 37 of 66
(mean global decrease was 33%) regions examined (Freo
et al, 2000).

MATERIALS AND METHODS

Materials

Radiolabeled [5,6,8,9,11,12,14,15-3H]arachidonate ([3H]ara-
chidonate) at a specific activity of 200 Ci/mmol was
purchased from Moravek Biochemicals (Brea, CA). Radio-
chemical purity as shown by thin-layer chromatography
always exceeded 96%. Fluoxetine was purchased from
Sigma-Research Biochemicals International (Natick, MA).
Sodium pentobarbital was purchased from Richmond
Veterinary Supply (Richmond, VA).

Animals

Male Fischer-344 rats (Charles River Laboratories, Wil-
mington, MA), weighing 290–320 g and 12-weeks old, were
housed under standard laboratory conditions with a 12 h
light–12 h dark cycle, with ready access to laboratory chow
and water. The experimental protocol was approved by the
National Institute of Child Health and Human Development
Animal Care and Use Committee, and conformed to the
Guide for the Care and Use of Laboratory Animals (National
Institute of Health Publication 86-23). Rats were divided
into two groups, eight animals in each: (1) those
administered fluoxetine, 10mg/kg i.p. in 1ml saline,
30min before tracer infusion and (2) controls administered
1ml i.p. saline 30min before tracer infusion.

Arterial and Venous Catheterization

The in vivo fatty acid method to image brain PLA2 signaling
has been described elsewhere (DeGeorge et al, 1991;
Hayakawa et al, 2001; Qu et al, 2003). Briefly, rats in each
of the two groups were anesthetized with halothane

(1–3% v/v in O2). PE 50 polyethylene catheters (Clay Adams,
Lincolnshire, IL) filled with heparinized saline (100 IU/ml)
were surgically implanted into a femoral artery and vein,
after which the incision site was infiltrated with a local
anesthetic (lidocaine) and closed with wound clips. The rats
were wrapped loosely in a fast-setting plaster cast, secured
to a wooden block with the upper body free, and allowed to
recover from anesthesia in a temperature-controlled and
sound-dampened box for 4 h. Body temperature was kept at
36–371C using a rectal thermometer and a feedback heating
device.

Drug Administration and Tracer Infusion

After a rat was allowed to recover from anesthesia for 4 h,
125 ml arterial blood was withdrawn to measure pH, pO2,
and pCO2. At 30min after the administration of i.p. saline
or fluoxetine (see above), 1.75mCi/kg [3H]arachidonate in
2ml of 5mM HEPES buffer, pH 7.4, containing 50mg/ml
fatty acid-free bovine serum, was infused through the
venous canula with an infusion pump (Harvard Instru-
ments, Holliston, MA), at a rate of 400 ml/min for 5min.
Timed 125-ml arterial blood samples were collected from the
beginning of infusion to 20min, when the rats were killed
with 65mg i.v. sodium pentobarbital. The brain was
immediately removed and frozen in 2-methylbutane at
�701C for subsequent quantitative autoradiography. Plasma
was separated from arterial blood by centrifugation, and its
lipids were extracted by the method of Folch (Folch et al,
1957). Radioactivity in the organic fraction was measured
by liquid scintillation counting.

Autoradiography and Calculations

Frozen brains were sectioned on a cryostat at �201C. Sets of
three adjacent 20-mm sections were collected and mounted
on glass coverslips at 140 mm coronal intervals and dried.
The three sections were exposed together with [3H]methyl-
methacrylate autoradiographic standards (Amersham,
Arlington Heights, IL) to [3H]phosphor imaging plates
(Fuji Medical Systems, Stamford, CT) for 7 days, which were
then scanned by a BAS 5000 scanner system (West
Lafayette, IN) following the manufacturer’s instructions.
An adjacent section was collected and stained with cresyl
violet to identify brain regions using a rat-brain atlas
(Paxinos and Watson, 1987).
Regional brain radioactivity was measured in sextuplicate

by quantitative densitometry using phosphor-imaging soft-
ware (Image Gauge V3.45, Fuji). Regional brain incorpora-
tion coefficients k* were calculated as

k� ¼ c�brainð20minÞ
R 20
0 c�plasmadt

ð1Þ

where k* is in units of ml/s/g; c�brainð20minÞ is brain
radioactivity at 20min after the onset of infusion, in units of
nCi/g; c�plasma is plasma fatty acid radioactivity in units of
nCi per ml; and t is the time after the onset of
[3H]arachidonate infusion.
Data were compared statistically using Prism software for

the Macintosh (Abacus Concepts, Berkeley, CA) and are
reported as means7 SEM. Student’s t-test tests were used
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to evaluate statistical significance between experimental and
control means. Pp0.05 was taken as indicating statistically
significance.

RESULTS

Table 1 summarizes the mean physiological parameters in
unanesthetized control and fluoxetine-treated rats. The
control means are similar to published values (Qu et al,
2003) and were not changed significantly by drug.
Figure 1 presents representative autoradiographs of

coronal brain sections from a rat administered fluoxetine
i.p. and a control rat. Fluoxetine 10mg/kg i.p. caused
significant widespread increases in k* for [3H]arachidonate.
The mean regional incorporation coefficients k* corre-
sponding to such increases are presented in Table 2.
As illustrated by Table 2, 30min after fluoxetine

administration, 42 of 85 brain regions had significantly
increased mean values for k* (by about 30%) compared
with control values. Significant increases were evident in
prefrontal frontal, motor and somatosensory cortex, and
olfactory and pyriform cortex, but not in the auditory or
visual cortex. Regions in the caudate-putamen, nucleus
accumbens, globus pallidus, amygdala, septum, thalamus,
and hypothalamus also showed significant increments in k*,
whereas significant changes generally were absent in
regions of the brain stem, spinal cord, and cerebellum.
The hippocampus showed elevations in CA1, CA2, and CA3
areas, but not in the dentate gyrus. The choroid plexus,
where the control value of k* was much greater than in the
brain parenchyma, demonstrated a 40% increase in k* in
response to fluoxetine. White matter incorporation of
[3H]arachidonate was unaffected by fluoxetine.

DISCUSSION

At 30min following administration to unanesthetized adult
male rats of fluoxetine (10mg/kg i.p.), the incorporation
coefficient k* for [3H]arachidonate was increased signifi-
cantly compared with control in 45 of 85 brain regions that
were examined. Significant increases were noted in regions
of the prefrontal and frontal cortex, motor and somatosen-
sory cortex, and of the basal ganglia, septum, hippocampus,
thalamus, and hypothalamus, but not of the auditory or
visual cortex, white matter, brain stem, spinal cord, or
cerebellum (Table 2) (Appel et al, 1990; Li et al, 2001; Pazos
and Palacios, 1985).

Fluoxetine, a high–affinity, high-selectivity antagonist of
the serotonin reuptake transporter (Wong et al, 1991)
promotes accumulation of 5-HT in the synaptic cleft.
Acutely administered fluoxetine has been reported to
increase extracellular 5-HT in many brain areas, including
the striatum (Perry and Fuller, 1993; Rutter and Auerbach,
1993), thalamus (Dailey et al, 1992), diencephalon (Rutter
et al, 1993), hypothalamus (Perry et al, 1993), and nucleus
accumbens. Increases were evident within 30–60min and
last for up to 3 h (Guan et al, 1988). In light of our
observations that DOI increases k* for [3H]arachidonate
and that the increases can be blocked by a 5-HT2 antagonist
(Qu et al, 2003), our results with fluoxetine (Table 2)
suggest that increased synaptic cleft 5-HT caused by the
drug indirectly increased the 5-HT occupancy of 5-HT2A/2C

receptors, which are coupled to PLA2, so as to release
arachidonic acid (Berg et al, 1998; Felder et al, 1990; Kim
et al, 1999). The regional incorporation coefficient k* for
[3H]arachidonate reflects this release (see Introduction)
(Rapoport, 2001; Robinson et al, 1992).
While many brain areas with reported high densities of

the serotonin reuptake transporter and of 5-HT2A/2C

Table 1 Physiological Parameters of Rats after Surgery

Saline Acute fluoxetine

Body temperaturea (1C) 36.17 0.3b 36.17 0.3
Arterial blood pressure (mm Hg)
(systolic pressure/diastolic pressure)

1257 2/787 1 1297 5/747 3

Heart rate (beats/min) 4167 4 4137 13
Arterial pH 7.417 0.02 7.417 0.02
Arterial blood gas (pCO2) 41.97 1.3 39.67 2.0
Arterial blood gas (pO2) 99.87 5.0 1017 3.0

aTemperature was measured with a rectal thermoprobe.
bMean7 SEM.
Animal number¼ 8.

Figure 1 Coronal autoradiographs demonstrating [3H]arachidonate
incorporation coefficients k* from brains of (a) control rat and (b) rat
acutely administered fluoxetine (10mg/kg i.p.). k* is color coded.
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receptors demonstrated significant increases in k* for
[3H]arachidonate in response to fluoxetine (Table 2),
exceptions were evident. High densities of the serotonin
reuptake transporter have been noted in the olfactory
tubercle, lateral septal nucleus, olfactory tubercle, lateral
septal nucleus, hypothalamic and thalamic nuclei, globus
pallidus, central gray, superior colliculus, substantia nigra,
interpeduncular nucleus, dorsal and lateral raphé, locus

coeruleus. Lesser but nevertheless high densities are present
in the frontal cortex, caudate-putamen, ventral pallidum,
and hippocampus (Choi et al, 2000; De Souza and Kuyatt,
1987; McReynolds and Meyer, 1998; Moll et al, 2000). k* was
elevated significantly in many of these regions, but not in all
of them (eg lateral septal nucleus, superior colliculus,
median, and dorsal raphé). High 5-HT2 receptor densities
are reported in the cerebral cortex (particularly layer IV),

Cerebral cortex
Prefrontal cortex IV 9.17 0.3 12.07 1.2*
Frontal cortex layer II–III 9.57 0.5 12.07 1.0*
Frontal cortex layer IV 10.67 0.5 13.57 1.1*
Motor cortex layer II–III 9.17 0.4 12.17 1.2*
Motor cortex layer IV 10.57 0.5 14.17 1.3*
Motor cortex layer V–VI 8.97 0.4 12.37 1.0*
Somatosensory cortex layer II–III 9.57 0.5 12.77 1.2*
Somatosensory cortex layer IV 10.27 0.5 14.07 1.4*
Somatosensory cortex layer V–VI 8.97 0.4 11.97 1.0*
Anterior cingulate cortex 9.87 0.4 11.87 1.4
Auditory cortex layer II–III 10.37 1.2 11.67 1.4
Auditory cortex layer IV 11.97 1.5 13.17 1.2
Auditory cortex layer V–VI 9.67 1.1 10.17 0.8
Visual cortex layer II–III 10.07 1.0 11.67 1.1
Visual cortex layer IV 10.77 1.0 12.37 1.1
Visual cortex layer V–VI 10.07 0.9 13.67 2.4

White matter
Corpus callosum 4.47 0.4 5.47 0.3
Internal capsule 4.27 0.4 5.27 0.3
Anterior commissure 5.37 0.5 6.57 0.4

Olfactory system
Olfactory cortex 11.17 0.5 14.67 1.1**
Pyriform cortex 9.77 0.4 14.57 1.2**

Basal ganglia and related areas
Nucleus accumbens 8.17 0.4 10.97 0.9*
Caudate-putamen dorsal 8.17 0.3 10.57 0.7*
Caudate-putamen ventral 8.37 0.3 10.47 0.9
Caudate-putamen lateral 8.07 0.4 10.67 0.8*
Caudate-putamen medial 7.97 0.3 9.57 0.8
Bed nucleus stria preoptic nucl. 7.47 0.3 9.77 0.7*
Suprachiasmatic nucleus 7.77 0.3 10.97 0.6*
Bed nucleus stria terminalis 6.67 0.4 8.67 0.7*
Entopeduncular nucleus 6.27 0.5 7.97 0.7
Globus pallidus 6.27 0.5 8.07 0.7*
Subthalamic nucleus 7.57 0.4 9.87 0.8*
Amygdala basolateral/basomedial nucl. 6.67 0.3 9.27 1.0*
Substantia nigra
Pars reticulata 8.57 0.8 9.67 0.7
Pars compacta 8.27 0.8 7.97 0.9

Septum
Lateral septal nucleus 6.57 0.3 8.17 0.7
Medial septal nucleus 7.37 0.4 10.07 0.8*
Dorsal diagonal band 7.67 0.5 9.97 0.8*
Ventral diagonal band 7.67 0.4 9.97 0.7*

Hippocampal formation
Ammon’s horn CA1 9.27 0.3 12.17 1.0*
Ammon’s horn CA2 8.57 0.4 12.37 1.3*
Ammon’s horn CA3 8.77 0.5 12.37 1.0**
Dentate gyrus 9.97 1.2 11.67 1.2

Thalamus and related areas
Paratenial nuclei 8.27 0.3 11.27 1.1*
Anteroventral nuclei 10.27 0.4 13.07 0.8**
Anteromedial nuclei 8.57 0.3 10.97 0.7*
Reticular nuclei 8.47 0.5 10.87 0.9*
Paraventricular nuclei 7.37 0.6 10.07 0.6**
Ventroposterior medial nucleus 7.97 0.3 10.37 0.8*
Ventroposterior lateral 7.77 0.3 9.67 0.8
Lateral habenular nucleus 8.67 0.3 11.97 1.2*
Medial habenular nucleus 9.37 0.4 12.57 1.2*
Medial geniculate nucleus 10.47 1.0 11.37 1.2
Dorsolateral geniculate nucleus 8.47 0.4 10.97 0.8*
Parafascicular nucleus 7.847 0.30 10.37 0.75*
Inferior colliculus 11.97 0.97 12.97 0.99
Superior colliculus 11.77 1.9 12.47 1.5

Hypothalamus
Supraoptic nucleus 13.07 2.5 16.17 2.8
Subfornical organ 9.17 0.6 12.97 1.3*
Lateral nuclei 6.77 0.5 8.77 0.7*
Anterior nuclei 6.87 0.8 9.37 0.9*
Periventricular nucleus 8.07 0.5 9.27 0.8
Arcuate nucleus 6.87 0.4 8.27 0.8*
Ventromedial nucleus 6.57 0.4 8.97 0.9*
Posterior nucleus 7.67 0.3 10.17 0.8*
Medial forebrain bundle 6.87 0.4 9.27 0.8
Mammillary body 7.47 0.4 10.77 1.0*
Median eminence 14.07 2.5 13.57 2.6

Brainstem and spinal cord
Raphe magnus nuclei 7.57 0.6 8.97 1.2
Raphe pallidus nuclei 8.57 0.7 9.67 1.4
Raphe median nuclei 8.57 0.8 10.27 1.2
Raphe dorsal nuclei 9.17 0.7 10.47 0.8
Locus coeruleus 9.97 1.0 10.57 0.7
Cochlear nucleus 14.07 2.5 16.77 3.8
Vestibular nucleus (medial) 11.77 0.8 13.87 1.2
Pretectal area 12.67 1.5 15.17 2.0
Pedunculopontine nucleus 7.27 0.7 8.27 0.8
Deep layers of superior colliculus 13.07 1.8 14.87 1.6
Interpeduncular nucleus 10.37 0.8 18.07 6.1
Spinal Tract V nucleus 8.37 0.8 8.87 0.7

Cerebellum
Cerebellar gray matter 10.47 0.9 11.57 0.8
Molecular layer, gray matter 10.77 0.9 11.97 0.8
Granular layer, gray matter 11.97 0.7 14.37 1.2
Flocculus 10.37 0.7 12.37 1.3
Cerebellar white matter 5.37 0.6 5.57 0.3

Choroid plexus 46.97 3.1 66.67 5.3**

Table 2 Regional [3H]Arachidonic Acid Incorporation Coefficients k* (ml/s/g brain� 104) in Rat Brain in Response to Acute Fluoxetine

Brain regiona Saline control Fluoxetine Brain regiona Saline control Fluoxetine

k* values are means7 SEM (n¼ 8). k* in rats given fluoxetine (10mg/kg i.p.) was compared with k* in rats given i.p. saline (controls).
Mean significantly different from control mean, *po0.05; **po0.01
aFrom Paxinos (1987).
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olfactory and pyriform cortex, nucleus accumbens, caudate-
putamen body and tail (Appel et al, 1990; Li et al, 2001;
Pazos and Palacios, 1985). Frontal and motor cortical
regions have higher densities than other cortical regions.
Densities are not as high in the caudate-putamen head,
globus pallidus, red nuclei, septal nuclei, and most parts of
the hippocampus, thalamus, and hypothalamus. Spinal
cord, brain stem, and cerebellum have few transporter or
5-HT2A/2C receptor sites, and as expected k* was not
elevated significantly in these areas.
Increases in k* may not occur at all brain sites containing

the serotonin reuptake transporter because transporter sites
and postsynaptic 5-HT2A/2C receptors are not always
colocalized. The transporter can be found at axons distant
from 5-HT2 synapses (Zhou et al, 1998), and some 5-HT2

synapses may lack the transporter altogether (Brown and
Molliver, 2000). Additionally, fluoxetine can increase brain
dopamine levels (Yoshino et al, 2002) to activate PLA2 at
dopaminergic D2 receptor sites rather than at 5-HT2A/2C

receptor sites (Hayakawa et al, 2001; Vial and Piomelli,
1995). Finally, fluoxetine can noncompetitively inhibit
cholinergic muscarinic (Owens et al, 1997) and nicotinic
receptors (Fryer and Lukas, 1999) and thereby reduce
release of arachidonic acid.
Indeed, PLA2 can be activated via a G-protein when an

agonist binds to cholinergic muscarinic receptors and
dopaminergic D2 receptors as well as to 5-HT2A/2C receptors
(Bayon et al, 1997; Cooper et al, 1996; DeGeorge et al, 1991;
Felder et al, 1990; Hayakawa et al, 2001; Kim et al, 1999;
Vial et al, 1995). PLA2 also may be activated by Ca2+ entry
into cells when glutamate acts at NMDA receptors or
acetylcholine acts at nicotinic receptors. Thus, baseline k*
for [3H]arachidonate in control rats represents the sum of
baseline activation of PLA2 via these different receptor
subtypes, as well as incorporation because of membrane
synthesis (particularly relevant for white matter myelin)
(Rapoport et al, 1997).
A 10-fold higher baseline value of k* for [3H]arachidonate

in the choroid plexus, as well as a significant increment in
k* in response to DOI or fluoxetine (Table 2) are consistent
with high densities of 5-HT2C-binding sites in the choroid
plexus (Kaufman et al, 1995; Li et al, 2001; Qu et al, 2003)
and with activation of PLA2 via these receptors. Fluoxetine
has been reported to bind to 5-HT2C sites in the choroid
plexus (Palvimaki et al, 1996). The high baseline k* in the
choroid plexus is consistent with high rates of uptake of
radiolabeled fatty acids into median eminence, subfornical
organ, pineal gland, adenohypophysis, and neurohypophy-
sis (Noronha et al, 1990; Noronha et al, 1989; Qu et al,
2003). These regions lack the continuous capillary bed of
the blood–brain barrier (Rapoport, 1976), allowing access of
labeled fatty acid both in its unbound unesterified form (as
for the brain parenchyma), and when bound to albumin
(Robinson et al, 1992). High values of k* for labeled
arachidonate also have been noted in the heart (Murphy
et al, 2000).
Fluoxetine can induce hyperthermia in rats (Lin et al,

1998). The activity of PLA2 as well that of other enzymes
might be expected to increase with an increase in
temperature (Bell et al, 1996). However, it is unlikely that
hyperthermia accounted for the findings in this paper, as
increased values for k* were not found in regions having

low densities of the serotonin reuptake transporter, and
because body temperature was maintained between 36 and
371C in this study (see Materials and methods). Additionally
hyperthermia has been shown to produce widespread
increases in rCMRglc in awake rats (Mickley et al, 1997),
whereas fluoxetine, when administered under the same
conditions in our study, has been shown either to not
change or to reduce rCMRglc (Freo et al, 2000).
Serotonin release from presynaptic elements can be

controlled by two types of autoreceptors (Cerrito and
Raiteri, 1980). 5-HT1A autoreceptors are found at the
somatodendritic region of cell bodies in midline and raphé
nuclei in the pons and upper brain stem, whereas 5-HT1B

autoreceptors are located at axon terminals, where they
control local 5-HT synthesis and release (Cooper et al,
1996; Hervas et al, 2000; Martin and Sanders-Bush, 1982).
Acutely administered fluoxetine has been reported to
inhibit electrical activity of serotonin neurons by activating
somatodendritic 5-HT1A autoreceptors (Czachura and
Rasmussen, 2000; Fuller, 1995), thus reducing 5-HT released
into the synaptic cleft. With chronic fluoxetine, inhibition
of 5-HT unit activity is less because of desensitization of
the 5-HT1A autoreceptor. Desensitization and recovery
of firing of 5-HT neurons develop slowly and con-
currently, and may contribute to the delayed onset of
therapeutic efficacy (Bergqvist et al, 1999; Blier and De
Montigny, 1983).
The widespread increments in k* for [3H]arachidonate in

response to acute fluoxetine (Table 2) contrast with reports
of no change or decrements in rCMRglc under comparable
experimental conditions (Freo et al, 2000). A similar
discrepancy between increased radiolabeled arachidonate
incorporation but decreased or no change in rCMRglc

follows DOI or methiothepin administration to unanesthe-
tized rats (Freo et al, 1991; Qu et al, 2001b; Ricchieri et al,
1987). These discrepancs likely arise because [3H]arachido-
nate incorporation localizes the postsynaptic PLA2-mediated
release of arachidonic acid at the serotonergic neuron,
whereas rCMRglc represents ATP consumption by the
downstream firing of presynaptic axon terminals of that
neuron (Ashby et al, 1990; Purdon and Rapoport, 1998; Qu
et al, 2003; Sokoloff, 1999).
The frontal cortex and hippocampus have been impli-

cated as sites of action of antidepressant drugs (Duman et al,
1997; Jacobson and Sapolsky, 1991). In this study (Table 2),
incorporation coefficients k* for [3H]arachidonate were
increased by fluoxetine in these regions, suggesting that to
signaling via PLA2 at these sites contributes to fluoxetine’s
antidepressant action. In major depression, serotonergic
neurotransmission may be disturbed and processes of
cellular immunity may be activated, suggesting a relation
between the two processes. Indeed, there appears to be a
constant ‘crosstalk’ between the immune endocrine, central,
and peripheral nervous systems which can involve seroto-
nin and arachidonic acid metabolites (eg prostaglandins)
(Leonard, 2001; Maier and Watkins, 1998).
In conclusion, we have demonstrated in unanesthetized

rats that acute fluoxetine activates PLA2 signaling and
increases labeled arachidonate incorporation from plasma
into brain regions having high serotonin reuptake trans-
porter densities, with some exceptions. Increased tracer
incorporation likely arises because fluoxetine indirectly
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increases binding of 5-HT to PLA2-coupled 5-HT2A/2C

receptors. Identifying the exact mechanisms of fluoxetine’s
acute action will entail using specific receptor antagonists
with it (Hayakawa et al, 2001; Mazzola-Pomietto et al, 1997;
Rabiner et al, 2002), or studying 5-HT2A or 5-HT2C

knockout mice (Lira et al, 2001).
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