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Previous exposure to amphetamine (AMPH) in the ventral tegmental area (VTA) enhances cocaine self-administration in a D1 dopamine

receptor-dependent manner. The present study examined the contribution of VTA NMDA, AMPA/kainate, and metabotropic glutamate

(mGlu) receptors to this effect. Rats in different groups received three intra-VTA injections, one every third day, of either saline (0.5 ml/
side), AMPH (2.5 mg/0.5ml/side), AMPH+CPP (NMDA receptor antagonist; 10mM or 100 mM/0.5 ml/side), AMPH+CNQX (AMPA/

kainate receptor antagonist; 0.3mM or 1mM/0.5 ml/side), AMPH+MCPG (mGlu receptor antagonist; 0.5mM or 50mM/0.5 ml/side), or
the glutamate receptor antagonists alone. Starting 7–10 days after the last pre-exposure injection, rats were trained to self-administer

cocaine (0.3mg/kg/infusion) and then tested under a progressive ratio (PR) schedule of reinforcement for 6 consecutive days. As

reported previously, VTA AMPH pre-exposed rats worked more and obtained more infusions of cocaine than saline pre-exposed

animals. Coadministration of CPP, CNQX, or MCPG with AMPH during pre-exposure dose-dependently blocked this enhancement of

cocaine self-administration. Rats pre-exposed to the glutamate receptor antagonists alone did not differ on the test days from the saline

pre-exposed controls. These results indicate that, in a manner paralleling the induction of sensitization of the locomotor stimulating

effects of AMPH, activation of NMDA, AMPA/kainate, and mGlu receptors during pre-exposure to AMPH in the VTA is necessary for

the enhancement of cocaine self-administration to develop.
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INTRODUCTION

Repeated exposure to psychostimulants leads to an endur-
ing augmentation of the behavioral and neurochemical
effects of these drugs, termed sensitization. This phenom-
enon may be relevant for psychostimulant addiction
because it comprises neuroadaptational processes in
specific brain areas initiated by previous exposure to
abused drugs (Robinson and Berridge, 1993). Consistent
with this view, repeated exposure to amphetamine (AMPH)
in the ventral tegmental area (VTA), but not in other brain
areas such as the prefrontal cortex (PFC) or the nucleus
accumbens (NAcc), leads to sensitization of its locomotor

and neurochemical effects (Vanderschuren and Kalivas,
2000) and also to enhanced self-administration of AMPH
(Vezina et al, 2002) and cocaine (Suto et al, 2002).
Dopamine (DA) neurotransmission in the VTA has been

particularly implicated in the induction of sensitization by
AMPH. Sensitization of the locomotor (Stewart and Vezina,
1989; Bjijou et al, 1996) and NAcc DA releasing (Vezina,
1996) effects of AMPH is prevented by coadministrating a
D1 receptor antagonist with AMPH into the VTA during
pre-exposure. D2 receptor antagonists, whether adminis-
tered systemically (Vezina and Stewart, 1989) or into the
VTA (Bjijou et al, 1996), have been found to be without
effect on the induction of locomotor sensitization by
AMPH. The enhancement of cocaine self-administration
produced by previous exposure to VTA AMPH also requires
activation of D1 receptors in this site (Suto et al, 2002). In
addition, previous exposure to a D1, but not D2, receptor
agonist in the VTA leads to sensitization of the locomotor
effects of cocaine (Pierce et al, 1996).
Importantly, activation of D1, but not D2, receptors in the

VTA increases extracellular levels of glutamate in this site
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(Kalivas and Duffy, 1995; Wolf and Xue, 1998, 1999),
possibly by a mechanism ultimately involving reversal of
glutamate transporters and reactive oxygen species (Wolf et
al, 2000). Indeed, induction of locomotor sensitization by
AMPH has been shown to be dependent on activation of N-
methyl-D-aspartate (NMDA: Cador et al, 1999; Vezina and
Queen, 2000) and metabotropic glutamate (mGlu: Kim
and Vezina, 1998) receptors in the VTA. Systemic
administration of NMDA (Karler et al, 1989; Wolf et al,
1995) or a-amino-3-hydroxy-5-methyl-4-isoxazole-propio-
nate (AMPA)/kainate receptor antagonists (Karler et al,
1991a; Li et al, 1997) also prevents the development of
locomotor sensitization by systemic AMPH. Moreover,
induction of locomotor sensitization by AMPH is blocked
by lesions of the PFC, which provides major glutamatergic
afferentation to the VTA (Wolf et al, 1995; Cador et al,
1999).
Exposure to AMPH in the VTA initiates neuroadapta-

tional processes in this site that lead to a long-lasting
enhancement of cocaine self-administration. Based on the
above evidence, it was hypothesized that these processes
require the activation of NMDA, AMPA/kainate, or mGlu
receptors in the VTA. To test this hypothesis, AMPH was
infused into the VTA alone or in combination with (7 )-3-
(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP:
NMDA receptor antagonist), 6-cyano-7-nitroquinoxaline-
2,3-dione disodium (CNQX: AMPA/kainate receptor an-
tagonist), or (7 )-alpha-methyl-4-carboxyphenylglycine
(MCPG: mGlu receptor antagonist). Starting 9–15 days
later, cocaine self-administration was assessed.

METHODS

Subjects

Male Long-Evans rats (Harlan Sprague–Dawley, Madison,
WI; Toconic, German Town, NY) weighing 250–275 g on
arrival were used. They were individually housed with food
and water freely available in a reverse cycle room (12-h
light : 12-h dark) for the duration of the experiment.
Animals were always tested during the dark period of the
light cycle.

Apparatus

A total of 15 chambers, each measuring 22� 43� 33 cm3,
were used for cocaine self-administration. Each chamber
was made of stainless steel (rear and two side walls), a
Plexiglas front hinged door, and a tubular stainless-steel
ceiling and floor. These chambers were placed in a plastic
box that shielded animals from extraneous disturbances.
White noise was supplied in each box by a ventilating fan. A
lever (5 cm above the floor) and a stimulus light (13.5 cm
above the lever) were positioned on the right side wall. Each
chamber was equipped with a liquid swivel system
comprised of a steel-spring tether, a liquid swivel, and an
infusion pump (Razel Scientific Inc., Model, A. E) that
allowed free movement of the animal in the chamber and
delivery of drug upon depression of the lever. The tether
was connected to the animal by screwing its captive collar
onto the threaded portion of a custom-designed L-shaped
Plastics One cannulae (20 gauge) secured to the animals

skull (see Pierre and Vezina, 1997). Lever presses and drug
infusions were recorded and controlled via an electrical
interface by a computer using locally developed software.

Drugs

S(+)-amphetamine sulfate (AMPH), (�)-cocaine hydro-
chloride (cocaine), CPP, CNQX, and MCPG were obtained
from Sigma, Inc. (Saint Louis, MO). Drugs were dissolved in
sterile saline (0.9%w/v) for both i.p. and i.c. routes of
administration. Doses refer to the weight of the salt.

Surgery

For all surgical procedures, rats were anesthetized with a
mix of ketamine (100mg/kg, i.p.) and xylazine (6mg/kg,
i.p.). For intracranial implantation of cannulae, animals
were placed in a stereotaxic instrument with the incisor bar
positioned 5.0mm above the interaural line (Pellegrino et
al, 1979). They were, then, implanted with chronic bilateral
guide cannulae (22 gauge, Plastics One, Roanoke, VA)
aimed either at the VTA (A/P, �3.6; L, 7 0.6; DV, �8.9
from bregma and skull) or areas surrounding this site in all
three planes. Cannulae were angled at 161 to the vertical and
positioned 1mm above the final injection site. After
surgery, 28 gauge obturators were placed in the guide
cannulae and rats were returned to their home cages for a
7–10-day recovery period.
For cocaine self-administration, rats were surgically

implanted with an i.v. catheter into their right external
jugular vein as described by Pierre and Vezina (1997). The
intravenous catheter used was made of silastic tubing (Dow
Corning, Inc.). Catheters were flushed daily with a 0.9%
sterile saline solution containing 30 IU/ml heparin and
250mg/ml ampicillin in order to promote patency. Seven
rats (saline, 1; CNQX, 1; AMPH+CPP, 3; AMPH+CNQX, 1;
AMPH+MCPG, 1) were dropped because their catheters
became nonpatent or developed leaks.
All surgical procedures were conducted using aseptic

techniques according to an approved IACUC protocol.

Design and Procedure

The experiment consisted of three phases: pre-exposure,
cocaine self-administration training, and cocaine self-
administration testing. Animals were randomly assigned
to different groups depending on the VTA pre-exposure
condition (AMPH, saline, receptor antagonist, and AM-
PH+receptor antagonist).

Pre-exposure. Starting 7–10 days after implantation of
bilateral guide cannulae into the VTA, animals received a
total of three microinjections corresponding to their pre-
exposure condition: AMPH (2.5 mg/0.5 ml/side), saline
(0.5 ml/side), CPP (10 or 100 mM/0.5 ml/side), CNQX (0.3 or
1.0mM/0.5ml/side), MCPG (0.5 or 50mM/0.5ml/side),
AMPH+CPP, AMPH+CNQX, or AMPH+MCPG. Microin-
jections were made once every third day with injection
cannulae (28 gauge) connected to 1 ml syringes (Hamilton,
Reno, NV) via PE-20 tubing and inserted to a depth 1mm
below the guide cannula tips. Injections were made in a
volume of 0.5 ml/side over 30 s. After 60 s, the injection
cannulae were withdrawn and the obturators were replaced.
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The dose of AMPH was selected based on the findings of
Vezina (1996), Kim and Vezina (1998), Cador et al (1999),
Vezina et al (2002), and Suto et al (2002) firmly establishing
a critical role for actions of AMPH in the VTA in the
induction of sensitization. In these studies, this dose of
AMPH was sufficient to induce not only sensitization of its
locomotor activating effects and its ability to increase
extracellular levels of DA in the NAcc, but also enhanced
self-administration of AMPH and cocaine. The two doses of
CPP and MCPG were selected based on the findings of Kim
and Vezina (1998) and Cador et al (1999), where the higher
dose of each antagonist blocked the development of
locomotor sensitization by AMPH in the VTA. In these
studies, neither CPP nor MCPG, when administered alone
during pre-exposure, influenced the locomotor effects of the
subsequent AMPH challenge. The two doses of CNQX were
selected based on the findings of Mathe et al (1998). In this
study, intra-VTA infusion of CNQX dose-dependently
blocked the locomotor and NAcc DA activating effects of
dizocilipine without affecting locomotion and extracellular
levels of NAcc DA by itself.

Cocaine self-administration training. Training for co-
caine self-administration began 7–10 days after the final
drug pre-exposure injection and at least 3 days after animals
received their i.v. catheters. Cocaine self-administration
sessions were held daily and lasted for 3 h. In all cases,
reinforced presses on the lever delivered an infusion of
cocaine through the i.v. catheter (0.3mg/kg/infusion). The
cocaine solution was injected in volumes of 0.10–0.13ml/
infusion at a rate of 1.6ml/min. For 15 s immediately
following reinforced depressions of the lever, a stimulus
light above the lever was lit and lever presses were recorded
but did not lead to further infusions.
An experimenter-delivered priming infusion of cocaine

(0.3mg/kg, i.v.) was given at the beginning of each session.
The initial schedule used was a fixed ratio 1 (FR1) and it was
increased to an FR2 once animals successfully administered
an additional nine infusions within the 3 h session. Rats
were then again required to self-administer an additional
nine infusions within a 3 h session under the FR2 schedule.
Animals that did not satisfy each of the FR1 and the FR2
criteria (ie nine infusions in a 3-h session) within 5 days
were excluded from the study. The following numbers
of rats were thus excluded (AMPH, 3; saline, 2; CPP, 6;
CNQX, 5; MCPG, 3; AMPH+CPP, 4; AMPH+CNQX, 4;
AMPH+MCPG, 4). Each training session lasted until
animals self-administered nine infusions or until 3 h
elapsed. Days to satisfaction of the training criteria under
each FR schedule were recorded.

Cocaine self-administration testing. Upon satisfactory
completion of self-administration training under the FR
schedules, rats were tested daily under a progressive ratio
(PR) schedule of reinforcement for 6 days. Under this
schedule, the number of responses required to obtain each
successive infusion of cocaine was determined by ROUND
(5� EXP(0.25� infusion number)�5) to produce the fol-
lowing sequence of required lever presses: 1, 3, 6, 9, 12, 17,
24, 32, 42, 56, 73, 95, 124, 161, 208, etc. (Richardson and
Roberts, 1996). The daily PR sessions lasted 3 h or until 1 h
elapsed without a drug infusion. Priming infusions were not

given during these sessions. The number of infusions
obtained in each PR session was recorded.
The dose of cocaine used and the procedures followed in

the self-administration training and testing phases of the
experiment were previously used to confirm this drug’s
reinforcing effects: rats self-administering cocaine obtained
significantly more infusions than rats self-administering
saline under all three schedules (FR1, FR2, and PR) of
reinforcement used (Suto et al, 2002).

Histology

After completion of the experiments, rats were anesthetized
with sodium pentobarbital and perfused via intracardiac
infusion of saline and 10% formalin. Brains were removed
and postfixed in 10% formalin. Coronal sections (40 mm)
were mounted onto gelatin-coated slides and subsequently
stained with cresyl violet for verification of cannulae tip
placements. The brains of three additional rats were
postfixed in saline solution containing 10% formalin and
30% sucrose and prepared for tyrosine hydroxylase (TH)
immunohistochemistry using procedures adapted from
those described by Bencsics et al (1996).
In order to assess the neuroanatomical specificity of the

VTA AMPH pre-exposure infusions, rats in an additional
group (AMPH outside VTA: N¼ 6) were pre-exposed to
bilateral infusions of AMPH in areas adjacent to the VTA.
These animals received infusions into the red nucleus, the
substantia nigra, or other sites dorsal and caudal to the VTA
(see Figure 6a). Remaining procedures were as described
above.
Only data obtained from animals with both cannula tips

placed in the VTA and from animals specifically in the
AMPH outside the VTA group were retained for statistical
analyses. After histological verification, the following
numbers of animals were excluded from each group because
one or both cannula tips were found to be outside the VTA:
AMPH, 1; saline, 1; CPP, 2; CNQX, 7; MCPG, 6;
AMPH+CPP, 5; AMPH+CNQX, 4; AMPH+MCPG, 1. As a
result, the final number of animals tested in the different
experimental groups was: AMPH, 10; saline, 12; CPP (10), 7;
CPP (100), 11; CNQX (0.3), 6; CNQX (1.0), 6; MCPG (0.5),
6; MCPG (50), 8; AMPH+CPP (10), 9; AMPH+CPP (100),
12; AMPH+CNQX (0.3), 7; AMPH+CNQX (1.0), 7;
AMPH+MCPG (0.5), 8; AMPH+MCPG (50), 8.

Data Analyses

The data obtained during self-administration training (days
to criterion) were analyzed with two-way between analyses
of variance (ANOVA) with pre-exposure (2 levels: AMPH
and saline) and glutamate receptor blockade (7 levels: CPP,
2 doses; CNQX, 2 doses; MCPG, 2 doses and saline) as the
between factors. The data obtained during self-administra-
tion testing (number of infusions obtained under the PR
schedule of reinforcement) were analyzed with two-way
between one-way within ANOVA with the two above
between factors and days of testing (6) as the within factor.
Thus, all these cocaine self-administration PR test data were
analyzed with one ANOVA even though they are illustrated
in different figures below (see Figures 3–5). The data used to
assess the neuroanatomical specificity of the VTA AMPH
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infusions were analyzed with one-way between ANOVA
with pre-exposure condition (3 levels: AMPH, saline and
AMPH outside VTA) as the between factor. The number of
infusions obtained in a PR session was used for statistical
analysis rather than the number of presses emitted or the
final ratios obtained since the later were, by definition,
generated from an exponential function (Richardson and
Roberts, 1996). Post hoc Tukey HSD tests were made
according to Kirk (1968).

RESULTS

Cocaine Self-Administration Training

In agreement with previous reports (Mendrek et al, 1998;
Lorrain et al, 2000; Suto et al, 2002; Vezina et al, 2002), rats
in all 14 groups readily satisfied the self-administration
training criteria and did so in similar fashion regardless of
pre-exposure condition. Thus, previous exposure to AMPH
or any of the glutamate receptor antagonists either alone or
with AMPH in the VTA did not affect, relative to saline pre-
exposed animals, the number of days to achieve the
criterion under either the FR1 or the FR2 schedules of

reinforcement. On average, rats in the different groups
satisfied each of the FR1 and FR2 criteria in 1–2 days
(Figures 1 and 2). The ANOVA conducted on these data
revealed no significant effects. Days to achieve FR1
criterion: pre-exposure (F1,103¼ 3.05, NS), glutamate recep-
tor blockade (F6,103¼ 0.70, NS), interaction (F6,103¼ 1.53,
NS). Days to achieve FR2 criterion: pre-exposure
(F1,103¼ 1.09, NS), glutamate receptor blockade
(F6,103¼ 0.51, NS), interaction (F6,103¼ 0.58, NS).

Cocaine Self-Administration Testing: Facilitation of
Cocaine Self-Administration by VTA AMPH Requires
NMDA, AMPA/Kainate, and mGlu Receptor Activation
During Pre-Exposure

Consistent with previous reports (Suto et al, 2002), rats pre-
exposed to VTA AMPH alone worked more and obtained
significantly more cocaine infusions than saline pre-
exposed control rats when tested under the PR schedule
of reinforcement. All three glutamate receptor antagonists
when coinfused with AMPH into the VTA during
pre-exposure were able to prevent the development of
this effect. Previous exposure to any of the glutamate
receptor antagonists alone did not affect subsequent
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Figure 1 Cocaine self-administration training under the FR1 schedule of reinforcement. Data are shown as the mean (+SEM) number of days animals
took to reach the criterion (nine self-administered infusions within a 3-h session) for this schedule. Following a single priming infusion of cocaine (0.3mg/kg),
rats were allowed to self-administer nine additional infusions of the drug. Pre-exposure condition (AMPH, saline, CPP, CNQX, MCPG, AMPH+CPP,
AMPH+CNQX, and AMPH+MCPG) did not significantly influence the number of days to achieve the criterion under the FR1 schedule of reinforcement.
No receptor antagonists were administered during cocaine self-administration training.

Exposure to AMPH enhances cocaine self-administration
N Suto et al

632

Neuropsychopharmacology



performance during PR testing in comparison to that
observed in the saline pre-exposed control rats. The
ANOVA conducted on all of the PR test data revealed
significant effects of pre-exposure (F1,103¼ 4.63, Po0.05),
glutamate receptor blockade (F6,103¼ 2.93, Po0.05)
and day (F5,515¼ 4.86, Po0.001), and a significant
pre-exposure� glutamate receptor blockade interaction
(F6,103¼ 2.43, Po0.05). The remaining interactions (pre-
exposure� day (F5,515¼ 0.54, NS), glutamate receptor
blockade� day (F30,515¼ 1.40, NS), and pre-exposure�
glutamate receptor blockade� day (F30,515¼ 0.99, NS)) did
not achieve statistical significance.
Post hoc Tukey HSD comparisons were subsequently

made on the group mean number of infusions obtained
averaged over the 6 days of PR testing (bar graphs in
Figures 3–5). These revealed that only the AMPH pre-
exposed rats obtained significantly more (Po0.01) cocaine
infusions compared to the saline pre-exposed animals.
These post hoc comparisons also revealed that coadminis-
tration of the NMDA, AMPA/kainate, and mGlu receptor
antagonists with AMPH into the VTA during pre-exposure
produced significant effects on performance during PR

testing. The NMDA receptor antagonist, CPP, dose-depen-
dently blocked the facilitation of cocaine self-administration
by VTA AMPH (Figure 3). Rats coadministered the higher
concentration of this antagonist (100 mM) with VTA AMPH
obtained significantly fewer (Po0.01) cocaine infusions
during PR testing than rats pre-exposed to VTA AMPH
alone. Similarly, the AMPA/kainate receptor antagonist,
CNQX, dose-dependently blocked the development of the
enhanced cocaine self-administration by VTA AMPH
(Figure 4). The number of cocaine infusions obtained by
rats coadministered the higher concentration of this
antagonist (1.0mM) with VTA AMPH was significantly
lower (Po0.01) than that obtained by rats pre-exposed to
VTA AMPH alone. Both concentrations (0.5 and 50mM) of
the mGlu receptor antagonist, MCPG, when coadministered
with AMPH into the VTA during pre-exposure, lead to
significantly lower levels (Pso0.05–0.01) of cocaine self-
administration compared to levels obtained in rats pre-
viously exposed to VTA AMPH alone (Figure 5). None of
the glutamate receptor antagonists when administered alone
at either dose during pre-exposure produced levels of
cocaine self-administration during PR testing that differed
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Figure 2 Cocaine self-administration training under the FR2 schedule of reinforcement. Data are shown as the mean (+SEM) number of days animals
took to reach the criterion (nine self-administered infusions within a 3-h session) for this schedule. Once animals satisfied the FR1 criterion, they were
switched to an FR2 schedule, once again given a single priming infusion (0.3mg/kg) and then allowed to self-administer nine additional infusions. As with the
FR1 schedule, the pre-exposure condition did not significantly influence the number of days to achieve the criterion under the FR2 schedule of
reinforcement. Again, no receptor antagonists were administered during cocaine self-administration training.
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Figure 4 Previous exposure to AMPH in the VTA enhances the self-administration of cocaine under a PR schedule of reinforcement: AMPA/kainate
receptor dependence. Procedures and illustration of data are as in Figure 3. **Po0.01 vs saline pre-exposed rats; wwPo0.01 vs AMPH pre-exposed rats; as
revealed by the post hoc Tukey HSD comparisons following ANOVA. N¼ 6–12/group.
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significantly from levels obtained in saline pre-exposed
animals.

Histology

Figure 6a illustrates the location of the injection cannula
tips in the VTA for rats in the AMPH and saline pre-
exposed groups as well as those for animals that received
bilateral AMPH infusions into sites outside the VTA. While
these latter animals received the same number of AMPH
infusions as rats in the AMPH pre-exposed group, these
infusions into sites peripheral to the VTA failed to enhance
cocaine self-administration during PR testing (Figure 6b).
These animals together with the VTA-saline pre-exposed
rats obtained significantly fewer cocaine infusions than
animals previously exposed to VTA AMPH. The ANOVA
conducted on these data averaged over the 6 PR test days
revealed a significant effect of groups (F2,25¼ 12.41,
Po0.001), and post hoc Tukey HSD comparisons showed
that only VTA AMPH pre-exposed animals obtained
significantly more cocaine infusions (Po0.001) than saline
pre-exposed rats. The remaining two groups did not differ
significantly from one another. Also shown is a photo-
micrograph of a cresyl-violet-stained brain section with a
representative injection cannula tip in the VTA (arrow in
Figure 6c). The higher power magnification photomicro-
graph in Figure 6d shows TH immunolabeled cells in close
proximity to the injection cannula tip. Little evidence of
neurotoxicity beyond the mechanical damage produced by
penetration of the cannulae was detected.

DISCUSSION

Consistent with previous reports, repeated exposure to
AMPH in the VTA led in the present study to enhanced
self-administration of cocaine. Importantly, it was found
that this enhancement of cocaine self-administration re-
quires the activation of NMDA, AMPA/kainate, and mGlu
receptors in the VTA during pre-exposure to AMPH in
this site.

AMPH Acts in the VTA to Induce Psychostimulant
Sensitization and Enhanced Self-Administration

A number of studies have now shown that repeated
exposure to systemic AMPH leads to augmentations in the
locomotor and NAcc DA responses to AMPH (Vanderschu-
ren and Kalivas, 2000), the locomotor activating effects of
cocaine (Schenk et al, 1991; Hooks et al, 1992) as well as
enhanced self-administration of AMPH (Piazza et al, 1989;
Pierre and Vezina, 1997; Mendrek et al, 1998; Lorrain et al,
2000) and cocaine (Horger et al, 1992; Valadez and Schenk,
1994). AMPH appears to produce these long-lasting effects
by acting in the VTA. Infusions of the drug into this site
have been shown to produce locomotor sensitization to
AMPH (Perugini and Vezina, 1994; Cador et al, 1995) and
cocaine (Kalivas and Weber, 1988), NAcc DA sensitization
to AMPH (Vezina, 1993, 1996), as well as enhanced AMPH
(Vezina et al, 2002) and cocaine (Suto et al, 2002; present
study) self-administration. Conversely, sensitized locomo-
tor responding to AMPH and cocaine (Kalivas and Weber,
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Figure 5 Previous exposure to AMPH in the VTA enhances the self-administration of cocaine under a PR schedule of reinforcement: mGlu receptor
dependence. Procedures and illustration of data are as in Figure 3. **Po0.01 vs saline pre-exposed rats; wPo0.05, ww0.01 vs AMPH pre-exposed rats; as
revealed by the post hoc Tukey comparisons following ANOVA. N¼ 6–12/group.
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1988; Hooks et al, 1992; Cador et al, 1995) and enhanced
AMPH self-administration (Vezina et al, 2002) are not
produced when animals are pre-exposed to AMPH in DA
neuron terminal regions such as the NAcc. Overall, this
evidence indicates that AMPH acts in the VTA not only to
produce sensitized locomotor and NAcc DA responding to
psychostimulants but also to enhance the self-administra-
tion of these drugs. Thus, the enhanced cocaine self-
administration observed following pre-exposure to VTA
AMPH in the present study may represent an instance of
AMPH-induced sensitization that can be used to model
psychostimulant addiction, as suggested by some (Robinson
and Berridge, 1993).

Induction of Sensitization by AMPH Requires
Activation of Glutamate Receptors in the VTA

The systemic administration of either NMDA (Karler et al,
1989; Wolf et al, 1995) or AMPA/kainate (Karler et al,
1991a; Li et al, 1997; cf Akiyama et al, 1998) receptor
antagonists as well as the application into the VTA of either
NMDA (Cador et al, 1999; Vezina and Queen, 2000) or
mGlu (Kim and Vezina, 1998) receptor antagonists has been
shown to prevent the induction of AMPH-induced loco-
motor sensitization. Moreover, systemically administering
NMDA receptor antagonists with AMPH during pre-
exposure also prevents cellular correlates of locomotor

Figure 6 Injection cannula tip placements in the VTA. Location of the injection cannula tips of rats previously exposed to VTA AMPH (K) or saline (*)
or to AMPH in sites outside the VTA (^) is illustrated in (a). Line drawings are from Paxinos and Watson (1997). Numbers to the right indicate mm from
bregma. (b) Previous exposure to AMPH in sites outside the VTA did not enhance cocaine self-administration during PR testing. Data are shown as group
mean (+SEM) number of cocaine infusions obtained averaged over the 6 PR test days. The number of presses required under the PR schedule to obtain
successive infusions of cocaine (0.3mg/kg/infusion) is also shown. ***Po0.001, significantly different from saline pre-exposed rats as revealed by post hoc
Tukey HSD comparisons following one-way ANOVA. N¼ 6–12/group. The photomicrographs illustrate a representative injection cannula tip in the VTA
(arrow in c) and TH positive cells in close proximity to it (d). Scale bars: 2mm in (c) and 100 mm in (d).
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sensitization normally observed in the VTA such as D2 DA
autoreceptor subsensitivity (Wolf et al, 1994) and increased
basic fibroblast growth factor, which through its effects on
astrocytic function may affect the function of dopaminergic
neurons (Flores and Stewart, 2000). The present results are
consistent with these findings. Taken together, they indicate
that activation of glutamate receptors in the VTA is
necessary for the induction of sensitization by AMPH and
its subsequent enhancement of cocaine self-administration.
AMPH promotes the somatodendritic release of DA in the

VTA (Kalivas and Duffy, 1991). This DA likely increases
extracellular levels of glutamate in this site by activating
local D1, but not D2, receptors (Kalivas and Duffy, 1995;
Wolf and Xue, 1998) including those expressed on
glutamate afferent terminals (Lu et al, 1997). Although the
precise localization of all subtypes of glutamate receptors in
the VTA remains unknown, this glutamate would at least be
available to activate those glutamate receptors (NMDA,
AMPA/kainate, and mGlu) known to be expressed by DA
perikarya in this site (Wang and French, 1993). Importantly,
activation of VTA D1 receptors has been shown to be
necessary for the induction of the locomotor and NAcc DA
sensitization (Stewart and Vezina, 1989; Bjijou et al, 1996;
Vezina, 1996) as well as the enhanced cocaine self-
administration (Suto et al, 2002) observed in VTA AMPH
pre-exposed animals. D2 receptor blockade fails to prevent
the induction of locomotor sensitization by VTA AMPH
(Bjijou et al, 1996). Thus, by increasing extracellular levels
of glutamate in the VTA via local D1 receptors, AMPH may
initiate neuroadaptational processes leading ultimately to
the expression of locomotor and NAcc DA sensitization as
well as enhanced drug self-administration.
The VTA receives afferent glutamatergic projections from

various brain areas, including the PFC, pendunculopontine
nuclei, amygdala, and subthalamic nucleus (Kalivas, 1993).
Of these, the descending excitatory amino acid projection
from the PFC to the VTA has been particularly implicated in
the induction of psychostimulant sensitization, because
lesions of the PFC prevent the induction of locomotor
sensitization by systemic (Wolf et al, 1995) and intra-VTA
(Cador et al, 1999) AMPH. Interestingly, recent anatomical
(Carr and Sesack, 2000), neurochemical (Takahata and
Moghaddam, 2000), and electrophysiological (Lokwan et al,
1999) reports suggest that the PFC-VTA glutamatergic
projection does not regulate VTA-NAcc DA neurons
directly but rather via polysynaptic midbrain circuits using
GABA, glutamate, acetylcholine, and perhaps other trans-
mitters originating in the VTA and sites (eg pedunculo-
pontine and laterodorsal nuclei; Lokwan et al, 1999; Forster
and Blaha, 2000) projecting to it. The contribution of these
local circuits as well as non-PFC originating glutamatergic
afferents to the VTA to the enhancement of psychostimu-
lant self-administration produced by previous exposure to
AMPH remains to be elucidated.

Consequences for the Induction of Sensitization of
NMDA, AMPA/Kainate, and mGlu Receptor Activation

In the present experiment, it was found that activation of
NMDA, AMPA/kainate, and mGlu receptors in the VTA is
necessary for the induction of sensitization by AMPH in this
site. The mechanisms underlying the contribution of these

receptors to the development of AMPH-induced sensitiza-
tion remain unknown, however. Interestingly, induction of
long-term potentiation (LTP) in different brain regions also
requires activation of NMDA, AMPA/kainate, and mGlu
receptors (Little et al, 1995; Anwyl, 1999; Malenka and
Nicoll, 1999). Previous exposure to AMPH or cocaine has
been reported to produce transient LTP or LTP-like effects
in the VTA (White et al, 1995; Zhang et al, 1997; Giorgetti et
al, 2001; Ungless et al, 2001), suggesting that sensitization
and LTP may reflect related or interacting forms of
neuroplasticity. To date, however, only NMDA receptor-
dependent LTP has been reported in DA neurons of the
VTA (Bonci and Malenka, 1999; Ungless et al, 2001).
Ca2+ entry into the intracellular space, where it can

recruit a number of second-messenger pathways, may
constitute one of the key neuronal events leading to
induction of sensitization. Systemic administration of an
L-type Ca2+ channel antagonist during AMPH pre-exposure
prevents the induction of locomotor sensitization (Karler et
al, 1991b), while repeated administration of an L-type Ca2+

channel agonist into the VTA produces locomotor sensiti-
zation to cocaine (Licata et al, 2000). NMDA, AMPA/
kainate, and mGlu receptors are known to interact to
influence this influx of Ca2+. For example, Ca2+ entry
through NMDA receptors generally requires concurrent
activation of both NMDA and AMPA/kainate receptors for
removal of Mg2+ blockade. Moreover, mGlu receptors
modulate both NMDA and AMPA receptor-mediated Ca2+

influx (Anwyl, 1999), while activation of the mGluR1-
subtype releases Ca2+ from intracellular stores (Pin and
Duvoisin, 1995). Interestingly, direct application of NMDA
into the VTA failed to produce cross-sensitization to the
locomotor activating effects of cocaine (Schenk and
Partridge, 1997; Licata et al, 2000), indicating that, as in
the case of LTP (Anwyl, 1999; Malenka and Nicoll, 1999),
induction of psychostimulant-induced sensitization may
require concurrent activation of more than one type of
glutamate receptor.
The function of ionotropic glutamate receptors is known

to be regulated by Ca2+-dependent kinases. For example,
AMPA receptor function is enhanced by phosphorylation of
its GluR1 subunit by Ca2+/calmodulin-dependent protein
kinase II (Derkach et al, 1999) as well as cAMP-dependent
protein kinase and protein kinase C (Roche et al, 1996;
Banke et al, 2000). Importantly, repeated exposure to
psychostimulants has been shown to transiently increase
the function of these receptors in the VTA (Zhang et al,
1997; Giorgetti et al, 2001). This transient enhancement of
AMPA receptor transmission in the VTA has been
suggested by some to be critical for the induction of
sensitization (White, 1996; Giorgetti et al, 2001). Given the
above evidence, it is conceivable that phosphorylation of the
GluR1 subunit may play a role. Consistent with this
possibility, infusion into the VTA of selective and
nonselective protein kinase inhibitors blocks the induction
of locomotor sensitization by cocaine and AMPH (Steketee,
1994; Tolliver et al, 1996, 1999). By thus enhancing AMPA
receptor function and transiently increasing the respon-
siveness of DA neurons in the VTA, AMPH pre-exposure
may promote the further entry of Ca2+ into these neurons
and the recruitment of additional Ca2+-dependent intracel-
lular cascades ultimately leading to the expression of

Neuropsychopharmacology

Exposure to AMPH enhances cocaine self-administration
N Suto et al

637



sensitization, including the enhanced cocaine self-adminis-
tration observed in the present study.
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