Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3

Abstract

Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2–FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2–FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alderton GK, Joenje H, Varon R, Borglum AD, Jeggo PA, O'Driscoll M . (2004). Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum Mol Genet 13: 3127–3138.

    Article  CAS  PubMed  Google Scholar 

  • Alter BP . (1996). Fanconi's anemia and malignancies. Am J Hematol 53: 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Blom E, van de Vrugt HJ, de Vries Y, de Winter JP, Arwert F, Joenje H . (2004). Multiple TPR motifs characterize the Fanconi anemia FANCG protein. DNA Repair 3: 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Bogliolo M, Lyakhovich A, Callen E, Castella M, Cappelli E, Ramirez MJ et al. (2007). Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO J 26: 1340–1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge WL, Vandenberg CJ, Franklin RJ, Hiom K . (2005). The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nat Genet 37: 953–957.

    Article  CAS  PubMed  Google Scholar 

  • Busch DB, Zdzienicka MZ, Natarajan AT, Jones NJ, Overkamp WJI, Collins A et al. (1996). A CHO mutant, UV40, that is sensitive to diverse mutagens and represents a new complementation group of mitomycin C sensitivity. Mutat Res 363: 209–221.

    Article  PubMed  Google Scholar 

  • Carreau M, Alon N, Bosnoyan-Collins L, Joenje H, Buchwald M . (1999). Drug sensitivity spectra in Fanconi anemia lymphoblastoid cell lines of defined complementation groups. Mutat Res 435: 103–109.

    Article  CAS  PubMed  Google Scholar 

  • Ciccia A, Ling C, Coulthard R, Yan ZJ, Xue YT, Meetei AR et al. (2007). Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell 25: 331–343.

    Article  CAS  PubMed  Google Scholar 

  • Collins N, Kupfer GM . (2005). Molecular pathogenesis of Fanconi anemia. Int J Hematol 82: 176–183.

    Article  CAS  PubMed  Google Scholar 

  • Davies AA, Masson JY, McLlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR et al. (2001). Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7: 273–282.

    Article  CAS  PubMed  Google Scholar 

  • de Winter JP, van der Weel L, de Groot J, Stone S, Waisfisz Q, Arwert F et al. (2000). The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum Mol Genet 9: 2665–2674.

    Article  CAS  PubMed  Google Scholar 

  • de Winter JP, Waisfisz Q, Rooimans MA, van Berkel CGM, Bosnoyan-Collins L, Alon N et al. (1998). The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat Genet 20: 281–283.

    Article  CAS  PubMed  Google Scholar 

  • Dronkert MLG, Kanaar R . (2001). Repair of DNA interstrand cross-links. Mutat Res 486: 217–247.

    Article  CAS  PubMed  Google Scholar 

  • Esashi F, Christ N, Gannon J, Liu YL, Hunt T, Jasin M et al. (2005). CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434: 598–604.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Higuera I, Kuang Y, Naf D, Wasik J, D'Andrea AD . (1999). Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol Cell Biol 19: 4866–4873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J et al. (2001). Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7: 249–262.

    Article  CAS  PubMed  Google Scholar 

  • Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM et al. (1996). Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 56: 5360–5364.

    CAS  PubMed  Google Scholar 

  • Gordon SM, Buchwald M . (2003). Fanconi anemia protein complex: mapping protein interactions in the yeast 2- and 3-hybrid systems. Blood 102: 136–141.

    Article  CAS  PubMed  Google Scholar 

  • Gregory RC, Taniguchi T, D'Andrea AD . (2003). Regulation of the Fanconi anemia pathway by monoubiquitination. Semin Cancer Biol 13: 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Groves MR, Barford D . (1999). Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 9: 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsdottir K, Ashworth A . (2006). The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25: 5864–5874.

    Article  CAS  PubMed  Google Scholar 

  • Henry-Mowatt J, Jackson D, Masson JY, Johnson PA, Clements PM, Benson FE et al. (2003). XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes. Mol Cell 11: 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  • Hinz JM, Nham PB, Salazar EP, Thompson LH . (2006). The Fanconi anemia pathway limits the severity of mutagenesis. DNA Repair 5: 875–884.

    Article  CAS  PubMed  Google Scholar 

  • Hinz JM, Nham PB, Urbin SS, Jones IM, Thompson LH . (2007). Disparate contributions of the Fanconi anemia pathway and homologous recombination in preventing spontaneous mutagenesis. Nucleic Acids Res 35: 3733–3740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano S, Yamamoto K, Ishiai M, Yamazoe M, Seki M, Matsushita N et al. (2005). Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO J 24: 418–427.

    Article  CAS  PubMed  Google Scholar 

  • Ho GPH, Margossian S, Taniguchi T, D'Andrea AD . (2006). Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol Cell Biol 26: 7005–7015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, de Die-Smulders C et al. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606–609.

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Wilson JB, Blom E, Thompson LH, Sung P, Gordon SM et al. (2006). Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. DNA Repair 5: 629–640.

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Wilson JB, Medhurst AL, Hejna J, Witt E, Ananth S et al. (2004). Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet 13: 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Witt E, Huber PAJ, Medhurst AL, Ashworth A, Mathew CG . (2003). Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet 12: 2503–2510.

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Bryant PE, Jones NJ . (2000). Isolation of camptothecin-sensitive Chinese hamster cell mutants: phenotypic heterogeneity within the ataxia telangiectasia-like XRCC8 (irs2) complementation group. Mutagenesis 15: 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Jones NJ . (1999). The isolation and genetic analysis of V79-derived etoposide sensitive Chinese hamster cell mutants: two new complementation groups of etoposide sensitive mutants. Mutat Res 435: 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RD, D'Andrea AD . (2005). The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev 19: 2925–2940.

    Article  CAS  PubMed  Google Scholar 

  • Kupfer GM, Naf D, Suliman A, Pulsipher M, D'Andrea AD . (1997). The Fanconi anaemia proteins, FAA and FAG, interact to form a nuclear complex. Nat Genet 17: 487–490.

    Article  CAS  PubMed  Google Scholar 

  • Lamb JR, Tugendreich S, Hieter P . (1995). Tetratrico peptide repeat interactions—to Tpr or not to Tpr. Trends Biochem Sci 20: 257–259.

    Article  CAS  PubMed  Google Scholar 

  • Lamerdin JE, Yamada NA, George JW, Souza B, Christian AT, Jones NJ et al. (2004). Characterization of the hamster FancG/Xrcc9 gene and mutations in CHOUV40 and NM3. Mutagenesis 19: 237–244.

    Article  CAS  PubMed  Google Scholar 

  • Levitus M, Joenje H, de Winter JP . (2006). The Fanconi anemia pathway of genomic maintenance. Cell Oncol 28: 3–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling C, Ishiai M, Ali AM, Medhurst AL, Neveling K, Kalb R et al. (2007). FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J 26: 2104–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Lamerdin JE, Tebbs RS, Schild D, Tucker JD, Shen MR et al. (1998). XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell 1: 783–793.

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Schild D, Thelen MP, Thompson LH . (2002). Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res 30: 1009–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyakhovich A, Surralles J . (2007). New roads to FA/BRCA pathway—H2AX. Cell Cycle 6: 1019–1023.

    Article  CAS  PubMed  Google Scholar 

  • Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ et al. (2001). Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15: 3296–3307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew CG . (2006). Fanconi anaemia genes and susceptibility to cancer. Oncogene 25: 5875–5884.

    Article  CAS  PubMed  Google Scholar 

  • Meetei AR, Medhurst AL, Ling C, Xue YT, Singh TR, Bier P et al. (2005). A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet 37: 958–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi J, Qiao F, Wilson JB, High AA, Schroeder MJ, Stukenberg PT et al. (2004). FANCG is phosphorylated at serines 383 and 387 during mitosis. Mol Cell Biol 24: 8576–8585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirchandani KD, D'Andrea AD . (2006). The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair. Exp Cell Res 312: 2647–2653.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD et al. (2005). Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 102: 1110–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niedernhofer LJ . (2007). The Fanconi anemia signalosome anchor. Mol Cell 25: 487–490.

    Article  CAS  PubMed  Google Scholar 

  • Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ . (2004). The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell 15: 607–620.

    Article  CAS  PubMed  Google Scholar 

  • O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA . (2003). A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33: 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi A, Zdzienicka MZ, Chen JJ, Couch FJ . (2005). Fanconi anemia complementation group D2 (FANCD2) functions independently of BRCA2- and RAD51-associated homologous recombination in response to DNA damage. J Biol Chem 280: 14877–14883.

    Article  CAS  PubMed  Google Scholar 

  • Pace P, Johnson M, Tan WM, Mosedale G, Sng C, Hoatlin M et al. (2002). FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J 21: 3414–3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel KJ, Joenje H . (2007). Fanconi anemia and DNA replication repair. DNA Repair 6: 885–890.

    Article  CAS  PubMed  Google Scholar 

  • Qiao FY, Mi J, Wilson JB, Zhi G, Bucheimer NR, Jones NJ et al. (2004). Phosphorylation of Fanconi anemia (FA) complementation group G protein, FANCG, at serine 7 is important for function of the FA pathway. J Biol Chem 279: 46035–46045.

    Article  CAS  PubMed  Google Scholar 

  • Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R et al. (2007). Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39: 162–164.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT . (1998). Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 58: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER, Hurov KE, Luo J et al. (2007). Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129: 289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H et al. (1998). Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17: 5497–5508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D et al. (2001). Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21: 2858–2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi T, D'Andrea AD . (2006). Molecular pathogenesis of Fanconi anemia: recent progress. Blood 107: 4223–4233.

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST et al. (2002). Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109: 459–472.

    Article  CAS  PubMed  Google Scholar 

  • Tebbs RS, Hinz JM, Yamada NA, Wilson JB, Salazar EP, Thomas CB et al. (2005). New insights into the Fanconi anemia pathway from an isogenic FancG hamster CHO mutant. DNA Repair 4: 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Thacker J . (2005). The RAD51 gene family, genetic instability and cancer. Cancer Lett 219: 125–135.

    Article  CAS  PubMed  Google Scholar 

  • Thompson LH . (2005). Unraveling the Fanconi anemia-DNA repair connection. Nat Genet 37: 921–922.

    Article  CAS  PubMed  Google Scholar 

  • Thompson LH, Hinz JM, Yamada NA, Jones NJ . (2005). How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. Environ Mol Mutagen 45: 128–142.

    Article  CAS  PubMed  Google Scholar 

  • Waisfisz Q, de Winter JP, Kruyt FAE, de Groot J, van der Weel L, Dijkmans LM et al. (1999). A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA. Proc Natl Acad Sci USA 96: 10320–10325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WD . (2007). Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8: 735–748.

    Article  CAS  PubMed  Google Scholar 

  • Wang XZ, Andreassen PR, D'Andrea AD . (2004). Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol 24: 5850–5862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney M, Thayer M, Reifsteck C, Olson S, Smith L, Jakobs PM et al. (1995). Microcell mediated chromosome transfer maps the Fanconi-anemia-group-D gene to chromosome-3p. Nat Genet 11: 341–343.

    Article  CAS  PubMed  Google Scholar 

  • Wiegant WW, Overmeer RM, Godthelp BC, van Buul PPW, Zdzienicka MZ . (2006). Chinese hamster cell mutant, V-C8, a model for analysis of BRCA2 function. Mutat Res 600: 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Wilson JB, Johnson MA, Stuckert AP, Trueman KL, May S, Bryant PE et al. (2001). The Chinese hamster FANCG/XRCC9 mutant NM3 fails to express the monoubiquitinated form of the FANCD2 protein, is hypersensitive to a range of DNA damaging agents and exhibits a normal level of spontaneous sister chromatid exchange. Carcinogenesis 22: 1939–1946.

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q et al. (2007). Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39: 159–161.

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu JM, Christ N et al. (2006). Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22: 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Yamada NA, Hinz JM, Kopf VL, Segalle KD, Thompson LH . (2004). XRCC3 ATPase activity is required for normal XRCC3-Rad51C complex dynamics and homologous recombination. J Biol Chem 279: 23250–23254.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Ishiai M, Matsushita N, Arakawa H, Lamerdin JE, Buerstedde JM et al. (2003). Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol Cell Biol 23: 5421–5430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Kupfer GM, Naf D, Suliman A, Joenje H, Asano S et al. (1998). The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation. Proc Natl Acad Sci USA 95: 13085–13090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita YM, Okada T, Matsusaka T, Sonoda E, Zhao GY, Araki K et al. (2002). RAD18 and RAD54 cooperatively maintenance of genomic stability cells. EMBO J 21: 5558–5566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YG, Herceg Z, Nakanishi K, Demuth I, Piccoli C, Michelon J et al. (2005). The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells. Carcinogenesis 26: 1731–1740.

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Liu X, Li L, Legerski R . (2007). Double-strand breaks induce homologous recombinational repair of interstrand cross-links via cooperation of MSH2, ERCC1-XPF, REV3, and the Fanconi anemia pathway. DNA Repair 6: 1670–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wienands J, Zurn C, Reth M . (1998). Induction of the antigen receptor expression on B lymphocytes results in rapid competence for signaling of SLP-65 and Syk. EMBO J 17: 7304–7310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all individuals who generously provided reagents, Yuxuan Xiao (NJJ), Keiko Namikoshi and Masayo Kimura (MT) for expert technical assistance, the Fanconi Anemia Research Fund for nurturing research collaborations and the North West Cancer Research Fund (UK) for financial support. This work was funded by grants NWCRF-CR624 and NWCRF-CR751 (NJJ). MT laboratory was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan with financial support also provided by the Naito Foundation, and the Sagawa Foundation for Promotion of Cancer Research. SH and CGM acknowledge support from the Medical Research Council and the Daniel Ayling Fanconi Anemia Trust. The contribution by LHT was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the DOE Low-Dose Program and NCI/NIH grant CA112566. GMK acknowledges grant funding from NHLBI R01 HL063776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N J Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J., Yamamoto, K., Marriott, A. et al. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3. Oncogene 27, 3641–3652 (2008). https://doi.org/10.1038/sj.onc.1211034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211034

Keywords

This article is cited by

Search

Quick links