Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear GSK-3β inhibits the canonical Wnt signalling pathway in a β-catenin phosphorylation-independent manner

Abstract

β-Catenin is the central signalling molecule of the canonical Wnt pathway, where it activates target genes in a complex with lymphoid enhancer factor/T-cell factor transcription factors in the nucleus. The regulation of β-catenin activity is thought to occur via a cytoplasmatic multiprotein complex that includes the serine/threonine kinase glycogen synthase kinase-3β (GSK-3β) that phosphorylates β-catenin, marking it for degradation by the proteasome. Here, we provide evidence showing that GSK-3β has a nuclear function in downregulating the activity of β-catenin. Using colorectal cell lines that express a mutant form of β-catenin, which cannot be phosphorylated by GSK-3β and ectopically expressed mutant β-catenin protein, we show that nuclear GSK-3β functions in a mechanism that does not involve β-catenin phosphorylation to reduce the levels of Wnt signalling. We show that GSK-3β enters the nucleus, forms a complex with β-catenin and lowers the levels of β-catenin/TCF-dependent transcription in a mechanism that involves GSK-3β–Axin binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CRC:

colorectal cancer

GSK-3β:

glycogen synthase kinase-3β

TCF/LEF:

T-cell factor/lymphoid enhancer factor

References

  • Bachelder RE, Yoon SO, Franci C, De Herreros AG, Mercurio AM . (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol 168: 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijur GN, Jope RS . (2001). Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta. J Biol Chem 276: 37436–37442.

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Frame S . (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol 2: 769–776.

    Article  CAS  PubMed  Google Scholar 

  • Cole A, Frame S, Cohen P . (2004). Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J 377: 249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A . (2003). Autoregulation of E-cadherin expression by cadherin–cadherin interactions: the roles of beta-catenin signaling, slug, and MAPK. J Cell Biol 163: 847–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong F, Varmus H . (2004). Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci USA 101: 2882–2887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR . (2007). Functional redundancy of GSK-3α and GSK-3β in Wnt/β-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12: 957–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doble BW, Woodgett JR . (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116: 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  • Franca-Koh J, Yeo M, Fraser E, Young N, Dale TC . (2002). The regulation of glycogen synthase kinase-3 nuclear export by Frat/GBP. J Biol Chem 277: 43844–43848.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M et al. (1997). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390: 308–311.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • Ginger R, Dalton EC, Ryves WJ, Fukuzawa M, Williams JG, Harwood AJ . (2000). Glycogen synthase kinase-3 enhances nuclear export of a Dictyostelium STAT protein. EMBO J 19: 5483–5491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory MA, Qi T, Hann SR . (2003). Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278: 51606–51612.

    Article  CAS  PubMed  Google Scholar 

  • Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS . (1997). Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 185: 82–91.

    Article  CAS  PubMed  Google Scholar 

  • Henderson BR . (2000). Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2: 653–660.

    Article  CAS  PubMed  Google Scholar 

  • Hughes K, Nicolakaki E, Plyte SE, Totty NF, Woodgett JR . (1993). Modulation of glycogen synthase kinase-3 family by tyrosine kinase phosphorylation. EMBO J 12: 803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh K, Brott BK, Bae GU, Ratcliffe J, Sokol SY . (2005). Nuclear localization is required for dishevelled function in Wnt/beta-catenin signaling. J Biol 4: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jean-Martin B, Tatyana T, Sotnikova TD, Yao W, Kockeritz L, Woodgett JR et al. (2004). Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 101: 5099–5104.

    Article  Google Scholar 

  • Kikuchi A, Kishida S, Yamamoto H . (2006). Regulation of Wnt signaling by protein–protein interaction and post-translational modifications. Exp Mol Med 38: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, De Weger R, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin–Tcf complex in APC−/− colon carcinoma. Science 275: 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  • Langford KJ, Askham JM, Lee T, Adams M, Morrison EE . (2006). Examination of actin and microtubule dependent APC localisations in living mammalian cells. BMC Cell Biol 7: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liberman Z, Eldar-Finkelman H . (2005). Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling. J Biol Chem 280: 4422–4428.

    Article  CAS  PubMed  Google Scholar 

  • Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA et al. (2004). Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24: 9993–10002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer L, Flajolet M, Greengard P . (2004). Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 25: 471–480.

    Article  CAS  PubMed  Google Scholar 

  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A . (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5: 691–701.

    Article  CAS  PubMed  Google Scholar 

  • Morisco C, Seta K, Hardt SE, Lee Y, Vatner SF, Sadoshima J . (2001). Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol Chem 276: 28586–28597.

    Article  CAS  PubMed  Google Scholar 

  • Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW . (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 272: 24735–24738.

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Doble B, Woodgett JR . (2004). Glycogen synthase kinase-3 in insulin and Wnt signalling: a double-edged sword? Biochem Soc Trans 32: 803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin B, Kaidanovich O, Talior I, Eldar-Finkelman H . (2003). Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J Pharmacol Exp Ther 305: 974–980.

    Article  CAS  PubMed  Google Scholar 

  • Rosin-Arbesfeld R, Townsley F, Bienz M . (2000). The APC tumour suppressor has a nuclear export function. Nature 406: 1009–1012.

    Article  CAS  PubMed  Google Scholar 

  • Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou J et al. (2000). APC mutations in sporadic colorectal tumors: a mutational ‘hotspot’ and interdependence of the ‘two hits’. Proc Natl Acad Sci USA 97: 3352–3357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar M, Rojo AI, Velasco D, De Sagarra RM, Cuadrado A . (2006). Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281: 14841–14851.

    Article  CAS  PubMed  Google Scholar 

  • Staal FJ, Noort Mv M, Strous GJ, Clevers H . (2002). Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin. EMBO R 3: 63–68.

    Article  CAS  Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR . (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6: 1664–1668.

    Article  CAS  PubMed  Google Scholar 

  • Watcharasit P, Bijur GN, Zmijewski J, Song L, Zmijewska A, Chen X et al. (2002). Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci USA 99: 7951–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiechens N, Heinle K, Englmeier L, Schohl A, Fagotto F . (2004). Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt–beta-catenin pathway. J Biol Chem 279: 5263–5267.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A . (1999). Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 274: 10681–10684.

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T et al. (2005). G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proc Natl Acad Sci USA 102: 6027–6032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH et al. (2006). A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8: 1398–1406.

    Article  CAS  PubMed  Google Scholar 

  • Yook JI, Li Y, Ota I, Fearon ER, Weiss SJ . (2005). Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280: 11740–11748.

    Article  CAS  PubMed  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  • Zilberberg A, Yaniv A, Gazit A . (2004). The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J Biol Chem 279: 17535–17542.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Avri Ben-Ze'ev of the Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel, and Dr Arnona Gazit of the Department of Human Microbiology, Tel Aviv University for critical reading of the manuscript. This work was supported by grants from The Israel Science Foundation (ISF), the ISRAEL CANCER RESEARCH FUND (ICRF) and the Israel Cancer Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Rosin-Arbesfeld.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caspi, M., Zilberberg, A., Eldar-Finkelman, H. et al. Nuclear GSK-3β inhibits the canonical Wnt signalling pathway in a β-catenin phosphorylation-independent manner. Oncogene 27, 3546–3555 (2008). https://doi.org/10.1038/sj.onc.1211026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211026

Keywords

This article is cited by

Search

Quick links