Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype

Abstract

Endoglin is a cell-surface adhesion protein as well as a coreceptor for transforming growth factor-β (TGF-β). It is located on endothelial and few other cells, but also found on certain tumor cells. Brain metastatic breast tumor cells derived from the MDA-MB-231 cell line heavily express endoglin in contrast to the corresponding parental ones. To clarify whether this determines their invasive phenotype, we compared their biological properties with endoglin-silenced brain-metastatic cells, low-expressing parental cells and these transfected with L- and S-endoglins, isoforms transducing or lacking TGF-β signals. All L-endoglin-overexpressing cells were characterized by numerous invadopodia where endoglin was preferentially localized. Endoglin-expression resulted in elevated levels of the matrix metalloproteinases (MMP-1 and MMP-19) and downregulation of the plasminogen activator inhibitor-1. In Boyden-chamber and wound-healing assays, endoglin-overexpressing cells showed a considerably higher migration and chemotaxis to TGF-β. In 3D spheroid confrontation assays between breast tumor cells and TGF-β-secreting glioma cells, high L-endoglin-expressing cells invaded into the glioma-spheroids whereas low-endoglin-expressing cells dissociated in the culture; invasion was blocked by TGF-β antibodies. In contrast to parental cells, endoglin-overexpressing cells invaded deeply into mouse brain slices. Thus, endoglin expression on tumor cells enhances their invasive character by formation of invadopodia, extracellular proteolysis, chemotaxis and migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

FCS:

fetal calf serum

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

MMP:

matrix metalloproteinase

RT–PCR:

reverse transcription PCR

PAI-1:

plasminogen activator inhibitor-1

TGF:

transforming growth factor

References

  • Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A et al. (2006). Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol 17: 945–951.

    Article  CAS  PubMed  Google Scholar 

  • Beck IM, Muller M, Mentlein R, Sadowski T, Mueller MS, Paus R et al. (2007). Matrix metalloproteinase-19 expression in keratinocytes is repressed by transcription factors Tst-1 and Skn-1a: implications for keratinocyte differentiation. J Invest Dermatol 127: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  • Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC . (1999). An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18: 4440–4449.

    Article  CAS  PubMed  Google Scholar 

  • Djonov V, Högger K, Sedlacek R, Laissue J, Draeger A . (2001). MMP-19: cellular localization of a novel metalloproteinase within normal breast tissue and mammary gland tumours. J Pathol 195: 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ . (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 1–6.

    Article  Google Scholar 

  • Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M . (2003). Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 22: 6557–6563.

    Article  CAS  PubMed  Google Scholar 

  • Fonsatti E, Del Vecchio L, Altomonte M, Sigalotti L, Nicotra MR, Coral S et al. (2001). Endoglin: an accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 188: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Forstreuter F, Lucius R, Mentlein R . (2002). Vascular endothelial growth factor (VEGF) induces chemotaxis and proliferation of microglial cells. J Neuroimmunol 132: 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K . (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374.

    Article  CAS  PubMed  Google Scholar 

  • Gougos A, Letarte M . (1990). Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265: 8361–8364.

    CAS  PubMed  Google Scholar 

  • Held-Feindt J, Lütjohann B, Ungefroren H, Mehdorn HM, Mentlein R . (2003). Interaction of transforming growth factor-β (TGF-β) and epidermal growth factor (EGF) in human glioma cells. J Neurooncol 63: 117–127.

    Article  PubMed  Google Scholar 

  • Kousidou OC, Roussidis AE, Theocharis AD, Karamanos NK . (2004). Expression of MMPs and TIMPs genes in human breast cancer epithelial cells depends on cell culture conditions and is associated with their invasive potential. Anticancer Res 24: 4025–4030.

    CAS  PubMed  Google Scholar 

  • Lastres P, Martin-Perez J, Langa C, Bernabeu C . (1994). Phosphorylation of the human-transforming-growth-factor-beta-binding protein endoglin. Biochem J 301: 765–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Schulte A, Schnack C, Hundhausen C, Reiss K, Brodway N et al. (2005). Enhanced expression and shedding of the transmembrane chemokine CXCL16 by reactive astrocytes and glioma cells. J Neurochem 93: 1293–1303.

    Article  CAS  PubMed  Google Scholar 

  • Mazar AP, Henkin J, Goldfarb RH . (1999). The urokinase plasminogen activator system in cancer: implications for tumor angiogenesis and metastasis. Angiogenesis 3: 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Mentlein R, Forstreuter F, Mehdorn H M, Held-Feindt J . (2004). Functional significance of vascular endothelial growth factor receptor expression on human glioma cells. J Neurooncol 67: 9–18.

    Article  PubMed  Google Scholar 

  • Muñoz-Nájar UM, Neurath KM, Vumbaca F, Claffey KP . (2006). Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25: 2379–2392.

    Article  PubMed  Google Scholar 

  • Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM et al. (2007). Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67: 4190–4198.

    Article  CAS  PubMed  Google Scholar 

  • Postiglione L, Di Domenico G, Caraglia M, Marra M, Giuberti G, Del Vecchio L et al. (2005). Differential expression and cytoplasm/membrane distribution of endoglin (CD105) in human tumour cell lines: implications in the modulation of cell proliferation. Int J Oncol 26: 1193–1201.

    CAS  PubMed  Google Scholar 

  • Stark AM, Tscheslog H, Buhl R, Held-Feindt J, Mehdorn HM . (2005). Surgical treatment for brain metastases: prognostic factors and survival in 177 patients. Neurosurg Rev 28: 115–119.

    Article  PubMed  Google Scholar 

  • Stark AM, Anuszkiewicz B, Mentlein R, Yoneda T, Mehdorn HM, Held-Feindt J . (2007). Differential expression of matrix metalloproteinases in brain- and bone-seeking clones of metastatic MDA-MB-231 breast cancer cells. J Neurooncol 81: 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Steeg PS . (2006). Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12: 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Stoppini L, Buchs PA, Muller D . (1991). A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37: 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Weaver AM . (2006). Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 3: 97–105.

    Article  Google Scholar 

  • Weil R, Palmieri D, Bronder JL, Stark AM, Steeg PS . (2005). Breast cancer metastasis to the central nervous system. Am J Pathol 167: 913–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R . (2001). A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16: 1486–1495.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of ‘Universitätsklinikum Schleswig-Holstein Campus Kiel’ (JH-F and RM) and the State of Schleswig-Holstein ‘Molecular Imaging in the North MOIN’ (RM). We thank Martina Burmester, Dagmar Freier, Miriam Lemmer and Ursula Prange for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Mentlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oxmann, D., Held-Feindt, J., Stark, A. et al. Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 27, 3567–3575 (2008). https://doi.org/10.1038/sj.onc.1211025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211025

Keywords

This article is cited by

Search

Quick links