Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Unmasking of epigenetically silenced candidate tumor suppressor genes by removal of methyl-CpG-binding domain proteins

Abstract

Methyl-cytosine-phosphate-guanine (CpG)-binding domain (MBD) proteins are bound to hypermethylated promoter CpG islands of tumor suppressor genes in human cancer cells, although a direct causal relationship at the genome-wide level between MBD presence and gene silencing remains to be demonstrated. To this end, we have inhibited the expression of MBD proteins in HeLa cells by short hairpin RNAs; and studied the functional consequences of MBD depletion using microarray-based expression analysis in conjunction with extensive bisulfite genomic sequencing and chromatin immunoprecipitation. The removal of MBDs results in a release of gene silencing associated with a loss of MBD occupancy in 5′-CpG islands without any change in the DNA methylation pattern. Our results unveil new targets for epigenetic inactivation mediated by MBDs in transformed cells, such as the cell adhesion protein γ-parvin and the fibroblast growth factor 19, where we also demonstrate their bona fide tumor suppressor features. Our data support a fundamental role for MBD proteins in the direct maintenance of transcriptional repression of tumor suppressors and identify new candidate genes for epigenetic disruption in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bakker J, Lin X, Nelson WG . (2002). Methyl-CpG binding domain protein 2 represses transcription from hypermethylated pi-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. J Biol Chem 277: 22573–22580.

    Article  CAS  PubMed  Google Scholar 

  • Ballestar E, Esteller M . (2005). Methyl-CpG-binding proteins in cancer: blaming the DNA methylation messenger. Biochem Cell Biol 83: 374–384.

    Article  CAS  Google Scholar 

  • Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J et al. (2003). Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J 22: 6335–6345.

    Article  CAS  PubMed  Google Scholar 

  • Ballestar E, Ropero S, Alaminos M, Armstrong J, Setien F, Agrelo R et al. (2005). The impact of MECP2 mutations in the expression patterns of Rett syndrome patients. Hum Genet 116: 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Bernard D, Gil J, Dumont P, Rizzo S, Monte D, Quatannens B et al. (2006). The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene 25: 1358–1366.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M . (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8: 286–298.

    Article  CAS  Google Scholar 

  • Fatemi M, Wade PA . (2006). MBD family proteins: reading the epigenetic code. J Cell Sci 119 (Part 15): 3033–3037.

    Article  CAS  PubMed  Google Scholar 

  • Fournier C, Goto Y, Ballestar E, Delaval K, Hever A, Esteller M et al. (2002). Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J 21: 6560–6570.

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Montoya G, Taysavang P, Wade PA, Esteller M . (2003). The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res 31: 1765–1774.

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Takebayashi S, Okumura K, Kudo S, Chiba T, Saya H et al. (1999). Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol 19: 6415–6426.

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M et al. (2003). Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 278: 24132–24138.

    Article  CAS  PubMed  Google Scholar 

  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T . (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035–4040.

    Article  CAS  PubMed  Google Scholar 

  • Guy J, Hendrich B, Holmes M, Martin JE, Bird A . (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27: 322–326.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hendrich B, Bird A . (1998). Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18: 6538–6547.

    Article  CAS  PubMed  Google Scholar 

  • Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A . (2001). Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15: 710–723.

    Article  CAS  PubMed  Google Scholar 

  • Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A . (1999). The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401: 301–304.

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB . (2003). Gene silencing in cancer in association with promoter hypermethylation. N Eng J Med 349: 2042–2054.

    Article  CAS  Google Scholar 

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93: 9821–9826.

    Article  CAS  Google Scholar 

  • Hutchins AS, Mullen AC, Lee HW, Sykes KJ, High FA, Hendrich BD et al. (2002). Gene silencing quantitatively controls the function of a developmental trans-activator. Mol Cell 10: 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Laird PW . (1999). Cancer epigenetics comes of age. Nat Genet 21: 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19: 187–191.

    Article  CAS  PubMed  Google Scholar 

  • Jordan C, Li HH, Kwan HC, Francke U . (2007). Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med Genet 8: 36.

    Article  PubMed  Google Scholar 

  • Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP . (2005). DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19: 667–678.

    Article  CAS  PubMed  Google Scholar 

  • Koizume S, Tachibana K, Sekiya T, Hirohashi S, Shiraishi M . (2002). Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells. Nucleic Acids Res 30: 4770–4780.

    Article  CAS  PubMed  Google Scholar 

  • Lan MS, Lu J, Goto Y, Notkins AL . (1994). Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 13: 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F et al. (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914.

    Article  CAS  Google Scholar 

  • Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M . (2006). A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res 66: 8342–8346.

    Article  CAS  PubMed  Google Scholar 

  • Magdinier F, Wolffe AP . (2001). Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc Natl Acad Sci USA 98: 4990–4995.

    Article  CAS  PubMed  Google Scholar 

  • Nan X, Ng HH, Johnson C, Laherty CD, Turner BM, Eisenman RN et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    Article  CAS  PubMed  Google Scholar 

  • Ng HH, Jeppesen P, Bird A . (2000). Active repression of methylated genes by the chromosomal protein MBD1. Mol Cell Biol 20: 1394–1406.

    Article  CAS  PubMed  Google Scholar 

  • Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H et al. (1999). MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23: 58–61.

    Article  CAS  Google Scholar 

  • Nguyen CT, Gonzales FA, Jones PA . (2001). Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 29: 4598–4606.

    Article  CAS  PubMed  Google Scholar 

  • Olski TM, Noegel AA, Korenbaum E . (2001). Parvin, a 42 kDa focal adhesion protein, related to the alpha-actinin superfamily. J Cell Sci 114: 525–538.

    CAS  PubMed  Google Scholar 

  • Saito M, Ishikawa F . (2002). MBD3 and HDAC1, two components of the NuRD complex, are localized at Aurora-A-positive centrosomes in M phase. J Biol Chem 277: 35434–35439.

    Article  CAS  Google Scholar 

  • Sansom OJ, Berger J, Bishop SM, Hendrich B, Bird A, Clarke AR . (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet 34: 145–147.

    Article  CAS  Google Scholar 

  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP . (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23: 62–66.

    Article  CAS  Google Scholar 

  • Yin W, Smiley E, Germiller J, Mecham RP, Florer JB, Wenstrup RJ et al. (1995). Isolation of a novel latent transforming growth factor-beta binding protein gene (LTBP-3). J Biol Chem 270: 10147–10160.

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K et al. (2003). Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA 100: 6777–6782.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Reinhard Fässler for providing us with the PARVG antibody. The work was supported by the Health (FIS01-04) and Education and Science (I+D+I MCYT08-03, FU2004-02073/BMC and Consolider MEC09-05) Departments of the Spanish Government, the European Grant Transfog LSHC-CT-2004-503438 and the Spanish Association Against Cancer (AECC). LL-S is a recipient of a BEFI predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Esteller.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Serra, L., Ballestar, E., Ropero, S. et al. Unmasking of epigenetically silenced candidate tumor suppressor genes by removal of methyl-CpG-binding domain proteins. Oncogene 27, 3556–3566 (2008). https://doi.org/10.1038/sj.onc.1211022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211022

Keywords

This article is cited by

Search

Quick links