Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma

Abstract

Cell adhesion molecule 1 (CADM1) is a putative tumour suppressor gene, which is downregulated in many solid tumours. In neuroblastoma, loss of CADM1 expression has recently been found in disseminated tumours with adverse outcome, prompting us to investigate its role in neuroblastoma tumour progression. Oligonucleotide-microarray analysis of 251 neuroblastoma specimens demonstrated that CADM1 downregulation is associated with unfavourable prognostic markers like disseminated stage 4, age >18 months, MYCN amplification and chromosome 11q alterations (P<0.001 each). Furthermore, low CADM1 expression was significantly correlated with unfavourable gene expression-based classification (P<0.001) and adverse patient outcome (P<0.001). Bisulphite sequencing and genetic analysis of 18 primary neuroblastomas suggested that neither haploinsufficiency nor hypermethylation is regularly involved in CADM1 gene silencing in neuroblastoma, which is in contrast to results obtained in other malignancies. In addition, no mutations disrupting the CADM1 reading frame were found in 25 primary neuroblastomas. Over-expression of CADM1 in neuroblastoma cells resulted in significant reduction of proliferation, viability and colony formation in soft agar. Collectively, our results suggest that downregulation of CADM1 tumour suppressor gene expression is a critical event in neuroblastoma pathogenesis resulting in tumour progression and unfavourable patient outcome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Berwanger B, Hartmann O, Bergmann E, Bernard S, Nielsen D, Krause M et al. (2002). Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell 2: 377–386.

    Article  CAS  Google Scholar 

  • Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T . (2005). BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21: 4067–4068.

    Article  CAS  Google Scholar 

  • Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP et al. (1993). Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11: 1466–1477.

    Article  CAS  Google Scholar 

  • Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA . (1989). Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 49: 219–225.

    CAS  Google Scholar 

  • De Preter K, Vandesompele J, Heimann P, Yigit N, Beckman S, Schramm A et al. (2006). Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes. Genome Biol 7: R84.

    Article  Google Scholar 

  • Decker T, Lohmann-Matthes ML . (1988). A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115: 61–69.

    Article  CAS  Google Scholar 

  • Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, Campan M et al. (2006). Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25: 2636–2645.

    Article  CAS  Google Scholar 

  • Fischer M, Oberthuer A, Brors B, Kahlert Y, Skowron M, Voth H et al. (2006). Differential expression of neuronal genes defines subtypes of disseminated neuroblastoma with favorable and unfavorable outcome. Clin Cancer Res 12: 5118–5128.

    Article  CAS  Google Scholar 

  • Fukami T, Fukuhara H, Kuramochi M, Maruyama T, Isogai K, Sakamoto M et al. (2003). Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines. Int J Cancer 107: 53–59.

    Article  CAS  Google Scholar 

  • Fukuhara H, Kuramochi M, Fukami T, Kasahara K, Furuhata M, Nobukuni T et al. (2002). Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer. Jpn J Cancer Res 93: 605–609.

    Article  CAS  Google Scholar 

  • Gomyo H, Arai Y, Tanigami A, Murakami Y, Hattori M, Hosoda F et al. (1999). A 2-Mb sequence-ready contig map and a novel immunoglobulin superfamily gene IGSF4 in the LOH region of chromosome 11q23.2. Genomics 62: 139–146.

    Article  CAS  Google Scholar 

  • Heller G, Geradts J, Ziegler B, Newsham I, Filipits M, Markis-Ritzinger EM et al. (2007). Downregulation of TSLC1 and DAL-1 expression occurs frequently in breast cancer. Breast Cancer Res Treat 103: 283–291.

    Article  CAS  Google Scholar 

  • Houshmandi SS, Surace EI, Zhang HB, Fuller GN, Gutmann DH . (2006). Tumor suppressor in lung cancer-1 (TSLC1) functions as a glioma tumor suppressor. Neurology 67: 1863–1866.

    Article  CAS  Google Scholar 

  • Ito A, Jippo T, Wakayama T, Morii E, Koma Y, Onda H et al. (2003a). SgIGSF: a new mast-cell adhesion molecule used for attachment to fibroblasts and transcriptionally regulated by MITF. Blood 101: 2601–2608.

    Article  CAS  Google Scholar 

  • Ito T, Shimada Y, Hashimoto Y, Kaganoi J, Kan T, Watanabe G et al. (2003b). Involvement of TSLC1 in progression of esophageal squamous cell carcinoma. Cancer Res 63: 6320–6326.

    CAS  Google Scholar 

  • Jansen M, Fukushima N, Rosty C, Walter K, Altink R, Heek TV et al. (2002). Aberrant methylation of the 5′ CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther 1: 293–296.

    Article  CAS  Google Scholar 

  • Katoh M . (2003). Identification and characterization of TPARM gene in silico. Int J Oncol 23: 1213–1217.

    CAS  Google Scholar 

  • Katoh M . (2004). Identification and characterization of human TMEM25 and mouse Tmem25 genes in silico. Oncol Rep 12: 429–433.

    CAS  Google Scholar 

  • Kikuchi S, Yamada D, Fukami T, Maruyama T, Ito A, Asamura H et al. (2006). Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer 106: 1751–1758.

    Article  CAS  Google Scholar 

  • Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP et al. (2001). TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27: 427–430.

    Article  CAS  Google Scholar 

  • Li J, Zhang Z, Bidder M, Funk MC, Nguyen L, Goodfellow PJ et al. (2005). IGSF4 promoter methylation and expression silencing in human cervical cancer. Gynecol Oncol 96: 150–158.

    Article  CAS  Google Scholar 

  • Lombet A, Zujovic V, Kandouz M, Billardon C, Carvajal-Gonzalez S, Gompel A et al. (2001). Resistance to induced apoptosis in the human neuroblastoma cell line SK-N-SH in relation to neuronal differentiation. Role of Bcl-2 protein family. Eur J Biochem 268: 1352–1362.

    Article  CAS  Google Scholar 

  • Mao X, Seidlitz E, Truant R, Hitt M, Ghosh HP . (2004). Re-expression of TSLC1 in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth. Oncogene 23: 5632–5642.

    Article  CAS  Google Scholar 

  • Mertens F, Johansson B, Hoglund M, Mitelman F . (1997). Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 57: 2765–2780.

    CAS  Google Scholar 

  • Murakami Y . (2005). Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci 96: 543–552.

    Article  CAS  Google Scholar 

  • Naishiro Y, Yamada T, Idogawa M, Honda K, Takada M, Kondo T et al. (2005). Morphological and transcriptional responses of untransformed intestinal epithelial cells to an oncogenic beta-catenin protein. Oncogene 24: 3141–3153.

    Article  CAS  Google Scholar 

  • Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM . (1993). Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328: 847–854.

    Article  CAS  Google Scholar 

  • Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R et al. (2006). Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24: 5070–5078.

    Article  CAS  Google Scholar 

  • Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M . (2004). The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 10: 4307–4313.

    Article  CAS  Google Scholar 

  • Ohira M, Oba S, Nakamura Y, Isogai E, Kaneko S, Nakagawa A et al. (2005). Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell 7: 337–350.

    Article  CAS  Google Scholar 

  • Ojeda SR, Lomniczi A, Mastronardi C, Heger S, Roth C, Parent AS et al. (2006). Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 147: 1166–1174.

    Article  CAS  Google Scholar 

  • Racher AJ, Looby D, Griffiths JB . (1990). Use of lactate dehydrogenase release to assess changes in culture viability. Cytotechnology 3: 301–307.

    Article  CAS  Google Scholar 

  • Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F et al. (1983). Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305: 245–248.

    Article  CAS  Google Scholar 

  • Steenbergen RD, Kramer D, Braakhuis BJ, Stern PL, Verheijen RH, Meijer CJ et al. (2004). TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst 96: 294–305.

    Article  CAS  Google Scholar 

  • Surace EI, Lusis E, Murakami Y, Scheithauer BW, Perry A, Gutmann DH . (2004). Loss of tumor suppressor in lung cancer-1 (TSLC1) expression in meningioma correlates with increased malignancy grade and reduced patient survival. J Neuropathol Exp Neurol 63: 1015–1027.

    Article  CAS  Google Scholar 

  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6: 529–535.

    Article  CAS  Google Scholar 

  • Tumilowicz JJ, Nichols WW, Cholon JJ, Greene AE . (1970). Definition of a continuous human cell line derived from neuroblastoma. Cancer Res 30: 2110–2118.

    CAS  Google Scholar 

  • Waha A, Koch A, Meyer-Puttlitz B, Weggen S, Sorensen N, Tonn JC et al. (2003). Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J Neuropathol Exp Neurol 62: 1192–1201.

    Article  CAS  Google Scholar 

  • Wakayama T, Koami H, Ariga H, Kobayashi D, Sai Y, Tsuji A et al. (2003). Expression and functional characterization of the adhesion molecule spermatogenic immunoglobulin superfamily in the mouse testis. Biol Reprod 68: 1755–1763.

    Article  CAS  Google Scholar 

  • Worsham MJ, Chen KM, Meduri V, Nygren AO, Errami A, Schouten JP et al. (2006). Epigenetic events of disease progression in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 132: 668–677.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yvonne Kahlert for excellent technical assistance. This work was supported by the Deutsche Krebshilfe (grants 50-2719-Fi1 and 106847), the Bundesministerium für Bildung und Forschung through the National Genome Research Network 2 (NGFN2 grants 01GS0456 and 01GR0450) and a grant of the Kind-Philipp Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Fischer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowacki, S., Skowron, M., Oberthuer, A. et al. Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma. Oncogene 27, 3329–3338 (2008). https://doi.org/10.1038/sj.onc.1210996

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210996

Keywords

This article is cited by

Search

Quick links