Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic adenoviral mutants induce a novel mode of programmed cell death in ovarian cancer

Abstract

Oncolytic adenoviral mutants have considerable activity in ovarian cancer. However, the mechanisms by which they induce cell death remain uncertain. dl922-947, which contains a 24 bp deletion in E1A CR2, is more potent than both E1A wild-type adenoviruses and the E1B-55K deletion mutant dl1520 (Onyx-015). We investigated the mode of death induced by three E1A CR2-deleted replicating adenoviruses in models of ovarian cancer and also the importance of E3 11.6 (adenovirus death protein) in determining this mode of death. Ovarian cancer cells were infected with dl922-947 (E3 11.6+) and dlCR2 (E3 11.6). We also generated dlCR2 tSmac, which also encodes the gene for processed Smac/DIABLO. Classical apoptosis does not occur in adenoviral cell death and there is no role for mitochondria. Expression of Smac/DIABLO does not enhance cytotoxicity nor increase apoptotic features. A role for cathepsins and lysosomal membrane permeability was excluded. Autophagy is induced, but is not the mode of death and may act as a cell survival mechanism. There is no evidence of pure necrosis, while the presence of E3 11.6 does not modulate the mode or extent of cell death. Thus, E1A CR2-deleted oncolytic adenoviral cytotoxicity in ovarian cancer may define a novel mode of programmed cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abou El Hassan MAI, van der Meulen-Muileman I, Abbas S, Kruyt FAE . (2004). Conditionally replicating adenoviruses kill tumor cells via a basic apoptotic machinery-independent mechanism that resembles necrosis-like Programmed Cell Death. J Virol 78: 12243–12251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117: 326–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658–662.

    Article  CAS  Google Scholar 

  • Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM . (2005). The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 1: 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E . (2001). Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res 268: 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Caro LH, Plomp PJ, Wolvetang EJ, Kerkhof C, Meijer AJ . (1988). 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur J Biochem 175: 325–329.

    Article  CAS  PubMed  Google Scholar 

  • Castino R, Pace D, Demoz M, Gargiulo M, Ariatta C, Raiteri E et al. (2002). Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int J Cancer 97: 775–779.

    Article  CAS  PubMed  Google Scholar 

  • Cereghetti GM, Scorrano L . (2006). The many shapes of mitochondrial death. Oncogene 25: 4717–4724.

    Article  CAS  PubMed  Google Scholar 

  • Chiou SK, Tseng CC, Rao L, White E . (1994). Functional complementation of the adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells. J Virol 68: 6553–6566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA et al. (2003). Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95: 652–660.

    Article  CAS  PubMed  Google Scholar 

  • Fueyo J, Gomez-Manzano C, Alemany R, Lee P, McDonnell T, Mitlianga P et al. (2000). A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19: 2–12.

    Article  CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ . (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911.

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Dix B, O'Carroll S, Braithwaite A . (1998). p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med 4: 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  • He T-C, Zhou S, Da Costa L, Yu J, Kinzler K, Vogelstein B . (1998). A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95: 2509–2514.

    Article  CAS  PubMed  Google Scholar 

  • Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. (2000). An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Aoki H, Kuhnel F, Kondo Y, Kubicka S, Wirth T et al. (2006). Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 98: 625–636.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F et al. (2007). Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99: 1410–1414.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P et al. (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12 (Suppl 2): 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  • Lelli Jr JL, Becks LL, Dabrowska MI, Hinshaw DB . (1998). ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Radic Biol Med 25: 694–702.

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Yuan J . (2005). Autophagy in cell death: an innocent convict? J Clin Invest 115: 2679–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyton J, Lockley M, Aerts JL, Baird SK, Aboagye EO, Lemoine NR et al. (2006). Quantifying the activity of adenoviral E1A CR2 deletion mutants using renilla luciferase bioluminescence and 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography imaging. Cancer Res 66: 9178–9185.

    Article  CAS  PubMed  Google Scholar 

  • Lockley M, Fernandez M, Wang Y, Li NF, Conroy SE, Lemoine NR et al. (2006). Activity of the adenoviral E1A deletion mutant dl922-947 in ovarian cancer: comparison with adenovirus wild-type, bioluminescence monitoring and intraperitoneal delivery in icodextrin. Cancer Res 66: 989–998.

    Article  CAS  PubMed  Google Scholar 

  • McNeish IA, Bell S, McKay T, Tenev T, Marani M, Lemoine NR . (2003). Expression of Smac/DIABLO in ovarian carcinoma cells induces apoptosis via a caspase-9-mediated pathway. Exp Cell Res 286: 186–198.

    Article  CAS  PubMed  Google Scholar 

  • McNeish IA, Tenev T, Bell S, Marani M, Vassaux G, Lemoine N . (2001). Herpes simplex virus thymidine kinase/ganciclovir-induced cell death is enhanced by co-expression of caspase-3 in ovarian carcinoma cells. Cancer Gene Ther 8: 308–319.

    Article  CAS  PubMed  Google Scholar 

  • Opipari Jr AW, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR . (2004). Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 64: 696–703.

    Article  CAS  PubMed  Google Scholar 

  • Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E . (1992). The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 89: 7742–7746.

    Article  CAS  PubMed  Google Scholar 

  • Robert A, Miron M-J, Champagne C, Gingras M-C, Branton PE, Lavoie JN . (2002). Distinct cell death pathways triggered by the adenovirus early region 4 ORF 4 protein. J Cell Biol 158: 519–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ, McCormick F . (2002). The RB and p53 pathways in cancer. Cancer Cell 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL . (1998). The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16: 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Stroikin Y, Dalen H, Loof S, Terman A . (2004). Inhibition of autophagy with 3-methyladenine results in impaired turnover of lysosomes and accumulation of lipofuscin-like material. Eur J Cell Biol 83: 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian T, Vijayalingam S, Chinnadurai G . (2006). Genetic identification of adenovirus type 5 genes that influence viral spread. J Virol 80: 2000–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talloczy Z, Jiang W, Virgin HW, Leib DA, Scheuner D, Kaufman RJ et al. (2002). Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 99: 190–195.

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT . (2003). Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 38: 863–876.

    Article  CAS  PubMed  Google Scholar 

  • Tollefson AE, Ryerse JS, Scaria A, Hermiston TW, Wold WS . (1996). The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology 220: 152–162.

    Article  CAS  PubMed  Google Scholar 

  • Yaginuma Y, Hayashi H, Kawai K, Kurakane T, Saitoh Y, Kitamura S et al. (1997). Analysis of the Rb gene and cyclin-dependent kinase 4 inhibitor genes (p16INK4 and p15INK4B) in human ovarian carcinoma cell lines. Exp Cell Res 233: 233–239.

    Article  CAS  PubMed  Google Scholar 

  • Ying B, Wold WSM . (2003). Adenovirus ADP protein (E3-11.6K), which is required for efficient cell lysis and virus release, interacts with human MAD2B. Virology 313: 224–234.

    Article  CAS  PubMed  Google Scholar 

  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB . (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18: 1272–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by Cancer Research UK (grant C9423/A4119). We acknowledge the excellent technical assistance of Ken Blight in the Electron Microscopy Department, Cancer Research UK London Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I A McNeish.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baird, S., Aerts, J., Eddaoudi, A. et al. Oncolytic adenoviral mutants induce a novel mode of programmed cell death in ovarian cancer. Oncogene 27, 3081–3090 (2008). https://doi.org/10.1038/sj.onc.1210977

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210977

Keywords

This article is cited by

Search

Quick links