Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Partial functional overlap of the three ras genes in mouse embryonic development

Abstract

In mammals, three ras genes, H-ras, N-ras and K-ras, encode homologous but distinct 21-kDa Ras proteins. We examined the in vivo functional relationship of the three ras genes in mouse embryonic development by investigating the phenotypes of mice deficient in one or multiple ras genes. H-ras−/− mice and N-ras−/− mice as well as a substantial proportion of H-ras−/−/N-ras−/− mice expressing only the K-ras gene were viable, while K-ras−/− mice were embryonically lethal, as have been reported previously. N-ras−/−/K-ras+/− mice died neonatally, while H-ras−/−/K-ras−/− embryos died much earlier than K-ras homozygous mutant fetuses. To further investigate the functional relationship of the ras genes in embryonic development, we introduced a human H-ras transgene into single or multiple ras mutant mice and found that the transgene rescued mice, including triple ras mutants, from embryonic lethality in association with correction of thin ventricular walls of the heart in null K-ras mutant mice. In situ hybridization revealed that the expression of the H-ras transgene on embryonic day E13.5 and E15.5 was more intense in major organs, including the heart, than those of endogenous ras genes. We therefore conclude that the functions of the ras genes are partially overlapping in mouse embryonic development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Apolloni A, Prior IA, Lindsay M, Parton RG, Hancock JF . (2000). H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 20: 2475–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balmain A, Brown K . (1988). Oncogene activation in chemical carcinogenesis. Adv Cancer Res 51: 147–182.

    Article  CAS  PubMed  Google Scholar 

  • Barbacid M . (1987). ras genes. Annu Rev Biochem 56: 779–827.

    Article  CAS  PubMed  Google Scholar 

  • Bos JL . (1989). ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  • Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N, Yienger K et al. (2001). Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21: 1444–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock JF . (2003). Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4: 373–384.

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF, Parton RG . (2005). Ras plasma membrane signalling platforms. Biochem J 389: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K et al. (1995). Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein. Nature 377: 695–701.

    Article  CAS  PubMed  Google Scholar 

  • Ise K, Nakamura K, Nakao K, Shimizu S, Harada H, Ichise T et al. (2000). Targeted deletion of the H-ras gene decreases tumor formation in mouse skin carcinogenesis. Oncogene 19: 2951–2956.

    Article  CAS  PubMed  Google Scholar 

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E et al. (1997). K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11: 2468–2481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MK, Jackson JH . (1998). Ras-GRF activates Ha-Ras, but not N-Ras or K-Ras 4B, protein in vivo. J Biol Chem 273: 1782–1787.

    Article  CAS  PubMed  Google Scholar 

  • Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T et al. (1997). K-Ras is essential for the development of the mouse embryo. Oncogene 4: 1151–1159.

    Article  Google Scholar 

  • Kuehn MR, Bradley A, Robertson EJ, Evans MJ . (1987). A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326: 295–298.

    Article  CAS  PubMed  Google Scholar 

  • Leon J, Guerrero I, Pellicer A . (1987). Differential expression of the ras gene family in mice. Mol Cell Biol 7: 1535–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowy DR, Willumsen BM . (1993). Function and regulation of Ras. Annu Rev Biochem 62: 851–891.

    Article  CAS  PubMed  Google Scholar 

  • Maher J, Baker DA, Manning M, Dibb NJ, Roberts IA . (1995). Evidence for cell-specific differences in transformation by N-, H- and K-ras. Oncogene 11: 1639–1647.

    CAS  PubMed  Google Scholar 

  • Malumbres M, Pellicer A . (1998). Ras pathways to cell cycle control and cell transformation. Front Biosci 3: 887–912.

    Article  Google Scholar 

  • Manabe T, Aiba A, Yamada A, Ichise T, Sakagami H, Kondo H et al. (2000). Regulation of long-term potentiation by H-Ras through NMDA receptor phosphorylation. J Neurosci 20: 2504–2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Kaibuchi K, Yamamoto T, Kawamura M, Sakoda T, Fujioka H et al. (1991). A stimulatory GDP/GP exchange protein for smg p21 is active on the post-translationally processed form of c-Ki-ras p21 and rhoA p21. Proc Natl Acad Sci USA 88: 6442–6446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez de Castro I, Diaz R, Malumbres M, Hernandez MI, Jagirdar J, Jimerez M et al. (2003). Mice deficient for N-ras: impaired antiviral immune response and T-cell function. Cancer Res 63: 1615–1622.

    PubMed  Google Scholar 

  • Plowman SJ, Hancock JF . (2005). Ras signaling from plasma membrane and endomembrane microdomains. Biochim Biophys Acta 1746: 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Plowman SJ, Williamson DJ, O'Sullivan MJ, Doig J, Ritchie AM, Harrison DJ et al. (2003). While K-ras is essential for mouse development, expression of the K-ras 4A splice variant is dispensable. Mol Cell Biol 23: 9245–9250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potenza N, Vecchione C, Notte A, De Rienzo A, Rosica A, Bauer L et al. (2005). Replacement of K-Ras with H-Ras supports normal embryonic development despite inducing cardiovascular pathology in adult mice. EMBO Rep 6: 432–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF . (2001). GTP-dependent segregation of H-Ras from lipid rafts is required for biological activity. Nature Cell Biol 3: 368–375.

    Article  CAS  PubMed  Google Scholar 

  • Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M et al. (2005). An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307: 1746–1752.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh A, Kimura M, Takahashi R, Yokoyama M, Nomura T, Izawa M et al. (1990). Most tumors in transgenic mice with human c-Ha-ras gene contained somatically activated transgenes. Oncogene 5: 1195–1200.

    CAS  PubMed  Google Scholar 

  • Umanoff H, Edelmann W, Pellicer A, Kucherlapati R . (1995). The murine N-ras gene is not essential for growth and development. Proc Natl Acad Sci USA 92: 1709–1713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willingham MC, Pastan I, Shih TY, Scolnick EM . (1980). Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell 19: 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  • Yagi T, Ikawa Y, Yoshida K, Shigetani Y, Takeda N, Mabuchi I et al. (1990). Homologous recombination at c-fyn locus of mouse embryonic stem cell with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci USA 87: 9918–9922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Aiba A, Nakamura K, Nakao K, Sakagami H, Goto K et al. (1996). Dopamine D2 receptor plays a critical role in cell proliferation and proopiomelanocortin expression in the pituitary. Genes Cells 1: 253–268.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S Aizawa for donating the DT-A gene; E Robertson for the CCE ES cells; K Katsuki, C Konishi and M Murakami for their excellent technical assistance; S Muroi, H Nakao and M Tanaka for the ES cell cultures; and K Tsurui, T Kohyama, M Tanaka and A Miyagawa for help with the animals. We also thank M Kimura and T Homma for critical reading of the manuscript. This work was supported in part by Grants-in-Aid for Scientific Research on Priority Areas, for Cancer Research and for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan, a Scientific Grant from the Ministry of Health and Welfare, Japan and also by the Science and Technology Agency, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Katsuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, K., Ichise, H., Nakao, K. et al. Partial functional overlap of the three ras genes in mouse embryonic development. Oncogene 27, 2961–2968 (2008). https://doi.org/10.1038/sj.onc.1210956

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210956

Keywords

This article is cited by

Search

Quick links