Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p73 expression modulates p63 and Mdm2 protein presence in complex with p53 family-specific DNA target sequence in squamous cell carcinogenesis

Abstract

The expression of p73 and p63 isoforms is frequently deregulated in human epithelial tumors. We previously showed that loss of p73 protein expression associates with malignant conversion in vivo and ionizing radiation (IR) resistance in vitro in a clonal model of mouse epidermal carcinogenesis. Here we show that loss of endogenous p73 expression in squamous cell carcinoma (SCC) cells and tumors was concomitant with preferential DNA binding of the inhibitory ΔNp63α isoform and reduction of transcriptionally active p63γ isoforms binding to a p21 promoter sequence in vitro. Reconstitution of TAp73α in malignant cells increased the steady state DNA-binding capabilities of the endogenous transcriptionally active TAp63γ and ΔNp63γ isoforms, correlating with restoration of tumor suppression but not IR sensitivity. Loss of p73 in malignant cells also coincided with increased presence of p53 family inhibitor Mdm2 in p53-specific DNA-bound complexes, whereas reconstitution of TAp73α expression resulted in exclusion of Mdm2 from these complexes. These results suggest a dual mechanism for TAp73α to foster tumor suppression through enhancement of the DNA-binding activity of p63γ isoforms, and through inhibition of transcriptional repressors Mdm2 or ΔNp63α.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Alarcon-Vargas D, Fuchs SY, Deb S, Ronai Z . (2000). p73 transcriptional activity increases upon cooperation between its spliced forms. Oncogene 19: 831–835.

    Article  CAS  PubMed  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, Vassilev LT . (2005). Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 65: 1918–1924.

    Article  CAS  PubMed  Google Scholar 

  • Cui R, He J, Mei R, de Fromentel CC, Martel-Planche G, Taniere P et al. (2005). Expression of p53, p63, and p73 isoforms in squamous cell carcinoma and adenocarcinoma of esophagus. Biochem Biophys Res Commun 336: 339–345.

    Article  PubMed  Google Scholar 

  • Deyoung MP, Ellisen LW . (2007). p63 and p73 in human cancer: defining the network. Oncogene 26: 5169–5183.

    Article  CAS  PubMed  Google Scholar 

  • Deyoung MP, Johannessen CM, Leong CO, Faquin W, Rocco JW, Ellisen LW . (2006). Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res 66: 9362–9368.

    Article  CAS  PubMed  Google Scholar 

  • Dohn M, Zhang S, Chen X . (2001). p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20: 3193–3205.

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Ghioni P, Bolognese F, Duijf PH, Van Bokhoven H, Mantovani R, Guerrini L . (2002). Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol Cell Biol 22: 8659–8668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldschneider D, Blanc E, Raguenez G, Haddada H, Benard J, Douc-Rasy S . (2003). When p53 needs p73 to be functional—forced p73 expression induces nuclear accumulation of endogenous p53 protein. Cancer Lett 197: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Nie L, Kawai H, Yuan ZM . (2001). Subcellular distribution of p53 and p73 are differentially regulated by MDM2. Cancer Res 61: 6703–6707.

    CAS  PubMed  Google Scholar 

  • Hofseth LJ, Hussain SP, Harris CC . (2004). p53: 25 years after its discovery. Trends Pharmacol Sci 25: 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J . (2006). MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 281: 33030–33035.

    Article  CAS  PubMed  Google Scholar 

  • Irwin MS, Kaelin Jr WG . (2001). Role of the newer p53 family proteins in malignancy. Apoptosis 6: 17–29.

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zeng SX, Dai MS, Yang XJ, Lu H . (2002). MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J Biol Chem 277: 30838–30843.

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Lagowski J, Sundberg A, Lawson S, Liu Y, Kulesz-Martin M . (2007). p73 loss triggers conversion to squamous cell carcinoma reversible upon reconstitution with TAp73α. Cancer Res 67: 7723–7730.

    Article  CAS  PubMed  Google Scholar 

  • Kadakia M, Slader C, Berberich SJ . (2001). Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol 20: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • King KE, Ponnamperuma RM, Gerdes MJ, Tokino T, Yamashita T, Baker CC et al. (2006). Unique domain functions of p63 isotypes that differentially regulate distinct aspects of epidermal homeostasis. Carcinogenesis 27: 53–63.

    Article  CAS  PubMed  Google Scholar 

  • Knights CD, Liu Y, Appella E, Kulesz-Martin M . (2003). Defective p53 post-translational modification required for wild type p53 inactivation in malignant epithelial cells with mdm2 gene amplification. J Biol Chem 278: 52890–52900.

    Article  CAS  PubMed  Google Scholar 

  • Knudson Jr AG . (1971). Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulesz-Martin MF, Penetrante R, East CJ . (1988). Benign and malignant tumor stages in a mouse keratinocyte line treated with 7,12-dimethylbenz[a]anthracene in vitro. Carcinogenesis 9: 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Chen X . (2005). The C-terminal sterile alpha motif and the extreme C terminus regulate the transcriptional activity of the alpha isoform of p73. J Biol Chem 280: 20111–20119.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Nozell S, Xiao H, Chen X . (2004a). DeltaNp73beta is active in transactivation and growth suppression. Mol Cell Biol 24: 487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Asch H, Kulesz-Martin MF . (2001). Functional quantification of DNA-binding proteins p53 and estrogen receptor in cells and tumor tissues by DNA affinity immunoblotting. Cancer Res 61: 5402–5406.

    CAS  PubMed  Google Scholar 

  • Liu Y, Lagowski JP, Vanderbeek GE, Kulesz-Martin MF . (2004b). Facilitated search for specific genomic targets by p53 C-terminal basic DNA binding domain. Cancer Biol Ther 3: 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  • Melino G, De Laurenzi V, Vousden KH . (2002). p73: friend or foe in tumorigenesis. Nat Rev Cancer 2: 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Michael D, Oren M . (2002). The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12: 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Slade N . (2004). p63 and p73: roles in development and tumor formation. Mol Cancer Res 2: 371–386.

    CAS  PubMed  Google Scholar 

  • Parsa R, Yang A, McKeon F, Green H . (1999). Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J Invest Dermatol 113: 1099–1105.

    Article  CAS  PubMed  Google Scholar 

  • Rocco JW, Ellisen LW . (2006). p63 and p73: life and death in squamous cell carcinoma. Cell Cycle 5: 936–940.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Huang H, Miner Z, Kulesz-Martin M . (1997). Activities and response to DNA damage of latent and active sequence-specific DNA binding forms of mouse p53. Proc Natl Acad Sci USA 94: 8982–8987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X et al. (1999). MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 19: 3257–3266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Amador Albor, Dr Hua Lu, Dr Rosalie Sears, and Dr Charles Lopez for scientific discussion, James Raymond for technical assistance, and Loa Nowina-Sapinski for administrative assistance. We thank Dr Lyubomir Vassilev (Hoffmann-La Roche) for provision of the Nutlin-3 compounds. We acknowledge funding by the OHSU Department of Dermatology, NIH grants CA98577 and CA98893 and the OHSU Cancer Institute (CA69533). Dr Johnson was funded in part by the National Institutes of Health under Ruth L Kirschstein National Research Service Award 1-T32-CA106195 ‘Training in Molecular Basis of Skin Pathobiology.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kulesz-Martin.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J., Lagowski, J., Lawson, S. et al. p73 expression modulates p63 and Mdm2 protein presence in complex with p53 family-specific DNA target sequence in squamous cell carcinogenesis. Oncogene 27, 2780–2787 (2008). https://doi.org/10.1038/sj.onc.1210941

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210941

Keywords

Search

Quick links