Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo

Abstract

Mammalian target of rapamycin (mTOR) has been shown to play an important function in cell proliferation, metabolism and tumorigenesis, and proteins that regulate signaling through mTOR are frequently altered in human cancers. In this study we investigated the phosphorylation status of key proteins in the PI3K/AKT/mTOR pathway and the effects of the mTOR inhibitors rapamycin and CCI-779 on neuroblastoma tumorigenesis. Significant expression of activated AKT and mTOR were detected in all primary neuroblastoma tissue samples investigated, but not in non-malignant adrenal medullas. mTOR inhibitors showed antiproliferative effects on neuroblastoma cells in vitro. Neuroblastoma cell lines expressing high levels of MYCN were significantly more sensitive to mTOR inhibitors compared to cell lines expressing low MYCN levels. Established neuroblastoma tumors treated with mTOR inhibitors in vivo showed increased apoptosis, decreased proliferation and inhibition of angiogenesis. Importantly, mTOR inhibitors induced downregulation of vascular endothelial growth factor A (VEGF-A) secretion, cyclin D1 and MYCN protein expression in vitro and in vivo. Our data suggest that mTOR inhibitors have therapeutic efficacy on aggressive MYCN amplified neuroblastomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aguirre D, Boya P, Bellet D, Faivre S, Troalen F, Benard J et al. (2004). Bcl-2 and CCND1/CDK4 expression levels predict the cellular effects of mTOR inhibitors in human ovarian carcinoma. Apoptosis 9: 797–805.

    Article  CAS  Google Scholar 

  • Beppu K, Jaboine J, Merchant MS, Mackall CL, Thiele CJ . (2004). Effect of imatinib mesylate on neuroblastoma tumorigenesis and vascular endothelial growth factor expression. J Natl Cancer Inst 96: 46–55.

    Article  CAS  Google Scholar 

  • Brodeur GM . (2003). Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203–216.

    Article  CAS  Google Scholar 

  • Chesler L, Schlieve C, Goldenberg DD, Kenney A, Kim G, Mcmillan A et al. (2006). Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res 66: 8139–8146.

    Article  CAS  Google Scholar 

  • Cohen PS, Chan JP, Lipkunskaya M, Biedler JL, Seeger RC . (1994). Expression of stem cell factor and c-kit in human neuroblastoma. The Children's Cancer Group. Blood 84: 3465–3472.

    CAS  PubMed  Google Scholar 

  • Cully M, You H, Levine a J, Mak TW . (2006). Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6: 184–192.

    Article  CAS  Google Scholar 

  • Davidoff AM, Leary MA, Ng CY, Vanin EF . (2001). Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg 36: 30–36.

    Article  CAS  Google Scholar 

  • Dong J, Peng J, Zhang H, Mondesire WH, Jian W, Mills GB et al. (2005). Role of glycogen synthase kinase 3beta in rapamycin-mediated cell cycle regulation and chemosensitivity. Cancer Res 65: 1961–1972.

    Article  CAS  Google Scholar 

  • Easton JB, Houghton PJ . (2006). mTOR and cancer therapy. Oncogene 25: 6436–6446.

    Article  CAS  Google Scholar 

  • Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans a E, Brodeur GM . (2002). Expression of the neurotrophin receptor TrkA down-regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Res 62: 1802–1808.

    CAS  PubMed  Google Scholar 

  • Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, Himelstein BP . (2000). High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res 6: 1900–1908.

    CAS  PubMed  Google Scholar 

  • Ferrara N, Alitalo K . (1999). Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5: 1359–1364.

    Article  CAS  Google Scholar 

  • Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH et al. (2004). AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 279: 2737–2746.

    Article  CAS  Google Scholar 

  • Grimmer MR, Weiss WA . (2006). Childhood tumors of the nervous system as disorders of normal development. Curr Opin Pediatr 18: 634–638.

    Article  Google Scholar 

  • Hay N . (2005). The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8: 179–183.

    Article  CAS  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.

    Article  CAS  Google Scholar 

  • Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P et al. (2002). Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 62: 6462–6466.

    CAS  PubMed  Google Scholar 

  • Ho R, Minturn JE, Hishiki T, Zhao H, Wang Q, Cnaan A et al. (2005). Proliferation of human neuroblastomas mediated by the epidermal growth factor receptor. Cancer Res 65: 9868–9875.

    Article  CAS  Google Scholar 

  • Jaboin J, Kim CJ, Kaplan DR, Thiele CJ . (2002). Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62: 6756–6763.

    CAS  PubMed  Google Scholar 

  • Kagedal B, Kullman A, Lenner L, Trager C, Kogner P, Farneback M . (2004). Pterin-dependent tyrosine hydroxylase mRNA is not expressed in human melanocytes or melanoma cells. Pigment Cell Res 17: 346–351.

    Article  CAS  Google Scholar 

  • Kenney AM, Widlund HR, Rowitch DH . (2004). Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131: 217–228.

    Article  CAS  Google Scholar 

  • Kim B, Van Golen CM, Feldman EL . (2004). Insulin-like growth factor-I signaling in human neuroblastoma cells. Oncogene 23: 130–141.

    Article  CAS  Google Scholar 

  • Kim ES, Serur A, Huang J, Manley CA, Mccrudden KW, Frischer JS et al. (2002). Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA 99: 11399–11404.

    Article  CAS  Google Scholar 

  • Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, Li P et al. (2006). ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6 K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res 66: 2028–2037.

    Article  CAS  Google Scholar 

  • Kozma SC, Thomas G . (2002). Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays 24: 65–71.

    Article  CAS  Google Scholar 

  • Lutz W, Stohr M, Schurmann J, Wenzel A, Lohr A, Schwab M . (1996). Conditional expression of N-myc in human neuroblastoma cells increases expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13: 803–812.

    CAS  PubMed  Google Scholar 

  • Macdonald TJ, Brown KM, Lafleur B, Peterson K, Lawlor C, Chen Y et al. (2001). Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29: 143–152.

    Article  CAS  Google Scholar 

  • Meitar D, Crawford SE, Rademaker AW, Cohn SL . (1996). Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J Clin Oncol 14: 405–414.

    Article  CAS  Google Scholar 

  • Nelsen CJ, Rickheim DG, Tucker MM, Hansen LK, Albrecht JH . (2003). Evidence that cyclin D1 mediates both growth and proliferation downstream of TOR in hepatocytes. J Biol Chem 278: 3656–3663.

    Article  CAS  Google Scholar 

  • Opel D, Poremba C, Simon T, Debatin KM, Fulda S . (2007). Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res 67: 735–745.

    Article  CAS  Google Scholar 

  • Ponthan F, Johnsen JI, Klevenvall L, Castro J, Kogner P . (2003). The synthetic retinoid RO 13-6307 induces neuroblastoma differentiation in vitro and inhibits neuroblastoma tumour growth in vivo. Int J Cancer 104: 418–424.

    Article  CAS  Google Scholar 

  • Ponthan F, Wickstrom M, Gleissman H, Fuskevag OM, Segerstrom L, Sveinbjornsson B et al. (2007). Celecoxib prevents neuroblastoma tumor development and potentiates the effect of chemotherapeutic drugs in vitro and in vivo. Clin Cancer Res 13: 1036–1044.

    Article  CAS  Google Scholar 

  • Schwab M, Westermann F, Hero B, Berthold F . (2003). Neuroblastoma: biology and molecular and chromosomal pathology. Lancet Oncol 4: 472–480.

    Article  CAS  Google Scholar 

  • Segerstrom L, Fuchs D, Backman U, Holmquist K, Christofferson R, Azarbayjani F . (2006). The anti-VEGF antibody bevacizumab potently reduces the growth rate of high-risk neuroblastoma xenografts. Pediatr Res 60: 576–581.

    Article  Google Scholar 

  • Singleton JR, Randolph a E, Feldman EL . (1996). Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res 56: 4522–4529.

    CAS  PubMed  Google Scholar 

  • Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H et al. (2005). Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65: 7052–7058.

    Article  CAS  Google Scholar 

  • Uccini S, Mannarino O, Mcdowell HP, Pauser U, Vitali R, Natali PG et al. (2005). Clinical and molecular evidence for c-kit receptor as a therapeutic target in neuroblastic tumors. Clin Cancer Res 11: 380–389.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC et al. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70: 535–602.

    Article  CAS  Google Scholar 

  • Vitali R, Cesi V, Nicotra MR, Mcdowell HP, Donfrancesco A, Mannarino O et al. (2003). c-Kit is preferentially expressed in MYCN-amplified neuroblastoma and its effect on cell proliferation is inhibited in vitro by STI-571. Int J Cancer 106: 147–152.

    Article  CAS  Google Scholar 

  • Wang JY, Del Valle L, Gordon J, Rubini M, Romano G, Croul S et al. (2001). Activation of the IGF-IR system contributes to malignant growth of human and mouse medulloblastomas. Oncogene 20: 3857–3868.

    Article  CAS  Google Scholar 

  • Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM . (1997). Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16: 2985–2995.

    Article  CAS  Google Scholar 

  • Yaari S, Jacob-Hirsch J, Amariglio N, Haklai R, Rechavi G, Kloog Y . (2005). Disruption of cooperation between Ras and MycN in human neuroblastoma cells promotes growth arrest. Clin Cancer Res 11: 4321–4330.

    Article  CAS  Google Scholar 

  • Yu Q, Ciemerych MA, Sicinski P . (2005). Ras and Myc can drive oncogenic cell proliferation through individual D-cyclins. Oncogene 24: 7114–7119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Schwab (German Cancer Research Centre, DKFZ, Heidelberg, Germany) for providing us with the Tet21N cell line. This work was supported by grants from the Swedish Childhood Cancer Foundation, The Swedish Cancer Foundation, The Swedish Research Council and Märta and Gunnar V Philipson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Segerström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsen, J., Segerström, L., Orrego, A. et al. Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 27, 2910–2922 (2008). https://doi.org/10.1038/sj.onc.1210938

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210938

Keywords

This article is cited by

Search

Quick links