Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of CCN3 expression as a potential mechanism for melanoma progression

Abstract

Coculture of human melanocytes with keratinocytes upregulates CCN3, a matricellular protein critical to maintenance of normal homeostasis of melanocytes in the skin. CCN3 affects two fundamental features of melanocyte physiology: it inhibits melanocyte proliferation and stimulates their adhesion to the basement membrane. Here we report that expression of CCN3 is downregulated in advanced melanomas. Aggressive melanoma cell lines did not respond to treatment with CCN3 inducers, such as interleukin-1β (IL-1β), while less aggressive melanoma cell lines responded similarly to melanocytes. Immunostaining analyses revealed that CCN3 was present in melanoma cells close to the epidermal–dermal interface, but not in melanoma cells that had invaded deep into the dermis or had metastasized to lymph nodes. Contrary to our expectations, overexpression of CCN3 in 1205Lu metastatic melanoma cells did not affect their adhesion to collagen IV. However, CCN3 decreased the transcription and activation of matrix metalloproteinases and suppressed the invasion of 1205Lu melanoma cells. These results suggest that the lack of CCN3 in advanced melanoma cells contributes to their invasive phenotype. Whereas major matricellular proteins, such as osteopontin, tenascin or secreted protein acidic and rich in cysteine (SPARC), are strongly upregulated in melanoma cells; CCN3 is the first member of this family that is downregulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Benini S, Perbal B, Zambelli D, Colombo MP, Manara MC, Serra M et al. (2005). In Ewing's sarcoma CCN3(NOV) inhibits proliferation while promoting migration and invasion of the same cell type. Oncogene 24: 4349–4361.

    Article  CAS  Google Scholar 

  • Breslow A . (1970). Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 172: 902–908.

    Article  CAS  Google Scholar 

  • Clark WH . (1991). Tumour progression and the nature of cancer. Br J Cancer 64: 631–644.

    Article  CAS  Google Scholar 

  • Denkert C, Siegert A, Leclere A, Turzynski A, Hauptmann S . (2002). An inhibitor of stress-activated MAP-kinases reduces invasion and MMP-2 expression of malignant melanoma cells. Clin Exp Metastasis 19: 79–85.

    Article  CAS  Google Scholar 

  • Fukunaga-Kalabis M, Martinez G, Liu ZJ, Kalabis J, Mrass P, Weninger W et al. (2006). CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. J Cell Biol 175: 563–569.

    Article  CAS  Google Scholar 

  • Gilles C, Bassuk JA, Pulyaeva H, Sage EH, Foidart JM, Thompson EW . (1998). SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res 58: 5529–5536.

    CAS  PubMed  Google Scholar 

  • Glukhova L, Angevin E, Lavialle C, Cadot B, Terrier-Lacombe MJ, Perbal B et al. (2001). Patterns of specific genomic alterations associated with poor prognosis in high-grade renal cell carcinomas. Cancer Genet Cytogenet 130: 105–110.

    Article  CAS  Google Scholar 

  • Gupta N, Wang H, McLeod TL, Naus CC, Kyurkchiev S, Advani S et al. (2001). Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV). Mol Pathol 54: 293–299.

    Article  CAS  Google Scholar 

  • Haass NK, Smalley KS, Herlyn M . (2004). The role of altered cell–cell communication in melanoma progression. J Mol Histol 35: 309–318.

    Article  CAS  Google Scholar 

  • Haass NK, Smalley KS, Li L, Herlyn M . (2005). Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 18: 150–159.

    Article  CAS  Google Scholar 

  • Herlyn M, Graeven U, Speicher D, Sela BA, Bennicelli JL, Kath R et al. (1991). Characterization of tenascin secreted by human melanoma cells. Cancer Res 51: 4853–4858.

    CAS  PubMed  Google Scholar 

  • Hofmann UB, Westphal JR, Waas ET, Zendman AJ, Cornelissen IM, Ruiter DJ et al. (1999). Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br J Cancer 81: 774–782.

    Article  CAS  Google Scholar 

  • Hsu MY, Shih DT, Meier FE, Van Belle P, Hsu JY, Elder DE et al. (1998). Adenoviral gene transfer of beta3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am J Pathol 153: 1435–1442.

    Article  CAS  Google Scholar 

  • Hsu MY, Wheelock MJ, Johnson KR, Herlyn M . (1996). Shifts in cadherin profiles between human normal melanocytes and melanomas. J Investig Dermatol Symp Proc 1: 188–194.

    CAS  PubMed  Google Scholar 

  • Kalembeyi I, Inada H, Nishiura R, Imanaka-Yoshida K, Sakakura T, Yoshida T . (2003). Tenascin-C upregulates matrix metalloproteinase-9 in breast cancer cells: direct and synergistic effects with transforming growth factor beta1. Int J Cancer 105: 53–60.

    Article  CAS  Google Scholar 

  • Kleer CG, Zhang Y, Pan Q, Merajver SD . (2004). WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia 6: 179–185.

    Article  CAS  Google Scholar 

  • Kuphal S, Bauer R, Bosserhoff AK . (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Rev 24: 195–222.

    Article  CAS  Google Scholar 

  • Lake AC, Bialik A, Walsh K, Castellot Jr JJ . (2003). CCN5 is a growth arrest-specific gene that regulates smooth muscle cell proliferation and motility. Am J Pathol 162: 219–231.

    Article  CAS  Google Scholar 

  • Laurent M, Martinerie C, Thibout H, Hoffman MP, Verrecchia F, Le Bouc Y et al. (2003). NOVH increases MMP3 expression and cell migration in glioblastoma cells via a PDGFR-alpha-dependent mechanism. FASEB J 17: 1919–1921.

    Article  CAS  Google Scholar 

  • Maillard M, Cadot B, Ball RY, Sethia K, Edwards DR, Perbal B et al. (2001). Differential expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Mol Pathol 54: 275–280.

    Article  CAS  Google Scholar 

  • Manara MC, Perbal B, Benini S, Strammiello R, Cerisano V, Perdichizzi S et al. (2002). The expression of ccn3(nov) gene in musculoskeletal tumors. Am J Pathol 160: 849–859.

    Article  CAS  Google Scholar 

  • Massi D, Franchi A, Borgognoni L, Reali UM, Santucci M . (1999). Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Hum Pathol 30: 339–344.

    Article  CAS  Google Scholar 

  • Matic M, Evans WH, Brink PR, Simon M . (2002). Epidermal stem cells do not communicate through gap junctions. J Invest Dermatol 118: 110–116.

    Article  CAS  Google Scholar 

  • McCallum L, Price S, Planque N, Perbal B, Pierce A, Whetton AD et al. (2006). A novel mechanism for BCR-ABL action: stimulated secretion of CCN3 is involved in growth and differentiation regulation. Blood 108: 1716–1723.

    Article  CAS  Google Scholar 

  • Nguyen N, Kuliopulos A, Graham RA, Covic L . (2006). Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res 66: 2658–2665.

    Article  CAS  Google Scholar 

  • Perbal B . (2001). NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol 54: 57–79.

    Article  CAS  Google Scholar 

  • Perbal B, Brigstock DR, Lau LF . (2003). Report on the second international workshop on the CCN family of genes. Mol Pathol 56: 80–85.

    Article  CAS  Google Scholar 

  • Philip S, Bulbule A, Kundu GC . (2001). Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem 276: 44926–44935.

    Article  CAS  Google Scholar 

  • Planque N, Long Li C, Saule S, Bleau AM, Perbal B . (2006). Nuclear addressing provides a clue for the transforming activity of amino-truncated CCN3 proteins. J Cell Biochem 99: 105–116.

    Article  CAS  Google Scholar 

  • Robert G, Gaggioli C, Bailet O, Chavey C, Abbe P, Aberdam E et al. (2006). SPARC represses E-cadherin and induces mesenchymal transition during melanoma development. Cancer Res 66: 7516–7523.

    Article  CAS  Google Scholar 

  • Satyamoorthy K, DeJesus E, Linnenbach AJ, Kraj B, Kornreich DL, Rendle S et al. (1997). Melanoma cell lines from different stages of progression and their biological and molecular analyses. Melanoma Res, (7 Suppl 2): S35–S42.

    Article  Google Scholar 

  • Seftor RE, Seftor EA, Hendrix MJ . (1999). Molecular role(s) for integrins in human melanoma invasion. Cancer Metastasis Rev 18: 359–375.

    Article  CAS  Google Scholar 

  • Tanimura S, Asato K, Fujishiro SH, Kohno M . (2003). Specific blockade of the ERK pathway inhibits the invasiveness of tumor cells: down-regulation of matrix metalloproteinase-3/-9/-14 and CD44. Biochem Biophys Res Commun 304: 801–806.

    Article  CAS  Google Scholar 

  • Welch DR, Sakamaki T, Pioquinto R, Leonard TO, Goldberg SF, Hon Q et al. (2000). Transfection of constitutively active mitogen-activated protein/extracellular signal-regulated kinase kinase confers tumorigenic and metastatic potentials to NIH3T3 cells. Cancer Res 60: 1552–1556.

    CAS  PubMed  Google Scholar 

  • Zhou Y, Dai DL, Martinka M, Su M, Zhang Y, Campos EI et al. (2005). Osteopontin expression correlates with melanoma invasion. J Invest Dermatol 124: 1044–1052.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kate M Belser for technical assistance. This work was supported by grants from the National Institutes of Health (CA76674, CA80999, CA47159, CA76674, CA25874 and CA10815) and was partially supported by funds from the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Herlyn.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukunaga-Kalabis, M., Martinez, G., Telson, S. et al. Downregulation of CCN3 expression as a potential mechanism for melanoma progression. Oncogene 27, 2552–2560 (2008). https://doi.org/10.1038/sj.onc.1210896

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210896

Keywords

This article is cited by

Search

Quick links