Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Monomeric but not trimeric clathrin heavy chain regulates p53-mediated transcription

Abstract

Tumor suppressor p53 protein is the transcription factor responsible for various genes including DNA repair, growth arrest, apoptosis and antiangiogenesis. Recently, we showed that clathrin heavy chain (CHC), which was originally identified as a cytosolic protein regulating endocytosis, is present in nuclei and functions as a coactivator for p53. Here, we determined the detailed p53-binding site of CHC and a CHC deletion mutant containing this region (CHC833-1406) behaved as a monomer in cells. Monomeric CHC833-1406 still had a higher ability to transactivate p53 than wild-type CHC although this CHC mutant no longer had endocytic function. Moreover, similar to wild-type CHC, monomeric CHC enhances p53-mediated transcription through the recruitment of histone acetyltransferase p300. Immunofluorescent microscopic analysis exhibited that CHC833-1406 is predominantly localized in nuclei, suggesting that there may be a certain regulatory domain for nuclear export in the C-terminus of CHC. Thus, the trimerization domain of CHC is not necessary for the transactivation of p53 target genes and these data provide further evidence that nuclear CHC plays a role distinct from clathrin-mediated endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barth M, Holstein SE . (2004). Identification and functional characterization of Arabidopsis AP180, a binding partner of plant alphaC-adaptin. J Cell Sci 117: 2051–2062.

    Article  CAS  Google Scholar 

  • Bourdon JC, Laurenzi VD, Melino G, Lane D . (2003). p53: 25 years of research and more questions to answer. Cell Death Differ 10: 397–399.

    Article  CAS  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    Article  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  Google Scholar 

  • Chen CY, Reese ML, Hwang PK, Ota N, Agard D, Brodsky FM . (2002). Clathrin light and heavy chain interface: alpha-helix binding superhelix loops via critical tryptophans. EMBO J 21: 6072–6082.

    Article  CAS  Google Scholar 

  • Chen D, Kon N, Li M, Zhang W, Qin J, Gu W . (2005). ARF-BP1/mule is a critical mediator of the ARF tumor suppressor. Cell 121: 1071–1083.

    Article  CAS  Google Scholar 

  • Dell'Angelica EC . (2001). Clathrin-binding proteins: got a motif? Join the network!. Trends Cell Biol 11: 315–318.

    Article  CAS  Google Scholar 

  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. (2004). The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429: 86–92.

    Article  CAS  Google Scholar 

  • Enari M, Ohmori K, Kitabayashi I, Taya Y . (2006). Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev 20: 1087–1099.

    Article  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC . (1991). p53 mutations in human cancers. Science 253: 49–53.

    Article  CAS  Google Scholar 

  • Honda R, Tanaka H, Yasuda H . (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.

    Article  CAS  Google Scholar 

  • Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M et al. (2005). A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123: 833–847.

    Article  CAS  Google Scholar 

  • Kim HL, Kim JA . (2000). Purification of clathrin assembly protein from rat liver. Exp Mol Med 32: 222–226.

    Article  CAS  Google Scholar 

  • Kirchhausen T . (2000). Clathrin. Annu Rev Biochem 69: 699–727.

    Article  CAS  Google Scholar 

  • Kirchhausen T, Harrison SC . (1981). Protein organization in clathrin trimers. Cell 23: 755–761.

    Article  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  Google Scholar 

  • Kumar S, Saradhi M, Chaturvedi NK, Tyagi RK . (2006). Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: an overview. Mol Cell Endocrinol 246: 147–156.

    Article  CAS  Google Scholar 

  • Kutay U, Guttinger S . (2005). Leucine-rich nuclear-export signals: born to be weak. Trends Cell Biol 15: 121–124.

    Article  CAS  Google Scholar 

  • Lafer EM . (2002). Clathrin-protein interactions. Traffic 3: 513–520.

    Article  CAS  Google Scholar 

  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. (2003). Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112: 779–791.

    Article  CAS  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  Google Scholar 

  • Linke SP, Sengupta S, Khabie N, Jeffries BA, Buchhop S, Miska S et al. (2003). p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 63: 2596–2605.

    CAS  PubMed  Google Scholar 

  • Ljungman M . (2000). Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2: 208–225.

    Article  CAS  Google Scholar 

  • McPherson PS, Kay BK, Hussain NK . (2001). Signaling on the endocytic pathway. Traffic 2: 375–384.

    Article  CAS  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  Google Scholar 

  • Nakamura Y, Futamura M, Kamino H, Yoshida K, Nakamura Y, Arakawa H . (2006). Identification of p53-46F as a super p53 with an enhanced ability to induce p53-dependent apoptosis. Cancer Sci 97: 633–641.

    Article  CAS  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J . (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199.

    Article  CAS  Google Scholar 

  • Oren M . (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10: 431–442.

    Article  CAS  Google Scholar 

  • Prives C, Hall PA . (1999). The p53 pathway. J Pathol 187: 112–126.

    Article  CAS  Google Scholar 

  • Royle SJ, Bright NA, Lagnado L . (2005). Clathrin is required for the function of the mitotic spindle. Nature 434: 1152–1157.

    Article  CAS  Google Scholar 

  • Royle SJ, Lagnado L . (2006). Trimerisation is important for the function of clathrin at the mitotic spindle. J Cell Sci 119: 4071–4078.

    Article  CAS  Google Scholar 

  • Samuels-Lev Y, O'Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S et al. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8: 781–794.

    Article  CAS  Google Scholar 

  • Seo YR, Fishel ML, Amundson S, Kelley MR, Smith ML . (2002). Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 21: 731–737.

    Article  CAS  Google Scholar 

  • Tarapore P, Fukasawa K . (2002). Loss of p53 and centrosome hyperamplification. Oncogene 21: 6234–6240.

    Article  CAS  Google Scholar 

  • Vecchi M, Polo S, Poupon V, van de Loo JW, Benmerah A, Di Fiore PP . (2001). Nucleocytoplasmic shuttling of endocytic proteins. J Cell Biol 153: 1511–1517.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  Google Scholar 

  • Wakeham DE, Chen CY, Greene B, Hwang PK, Brodsky FM . (2003). Clathrin self-assembly involves coordinated weak interactions favorable for cellular regulation. EMBO J 22: 4980–4990.

    Article  CAS  Google Scholar 

  • Ybe JA, Brodsky FM, Hofmann K, Lin K, Liu SH, Chen L et al. (1999). Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399: 371–375.

    Article  CAS  Google Scholar 

  • Zhong Q, Gao W, Du F, Wang X . (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121: 1085–1095.

    Article  CAS  Google Scholar 

  • Ziegler EC, Ghosh S . (2005). Regulating inducible transcription through controlled localization. Sci STKE 2005: re6.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs T Nagase and M Ohishi (Kazusa DNA Research Institute) for the full-length CHC clone (KIAA0034), Dr I Kitabayashi (National Cancer Center Research Institute) for FLAG-tagged and HA-tagged p300 constructs, Dr B Vogelstein (Johns Hopkins University) for the WWP-Luc reporter plasmid, Drs H Arakawa and Y Nakamura (The University of Tokyo) for the reporter vector containing p53AIP1 promoter, and Drs T Shibue and T Taniguchi for the reporter vector of Noxa promoter (The University of Tokyo), respectively. This work was supported by MEXT, KAKENHI (17013088) and a Grant-in-Aid from the Ministry of Health, Labor and Welfare for the 3rd Term Comprehensive 10-year Strategy for Cancer Control (to YT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Taya or M Enari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmori, K., Endo, Y., Yoshida, Y. et al. Monomeric but not trimeric clathrin heavy chain regulates p53-mediated transcription. Oncogene 27, 2215–2227 (2008). https://doi.org/10.1038/sj.onc.1210854

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210854

Keywords

This article is cited by

Search

Quick links