Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ligand release-independent transactivation of epidermal growth factor receptor by transforming growth factor-β involves multiple signaling pathways

Abstract

Many of the signaling responses induced by transforming growth factor-β (TGF-β) are mediated by Smad proteins, but there is evidence that it can also signal independently of Smads. Here, we provide evidence that multiple signal pathways induced by TGF-β1—including Src family tyrosine kinases (SFKs), generation of reactive oxygen species (ROS), de novo protein synthesis and E-cadherin-dependent cell–cell interactions—transactivate the epidermal growth factor receptor (EGFR), which in turn regulates expression of c-Fos and c-Jun. Immunoprecipitation and immunofluorescence staining showed that EGFR was phosphorylated on tyrosine in response to TGF-β1. EGFR transactivation required the activation of SFKs and the production of ROS via NADPH oxidase, but was not dependent on metalloproteases or the release of EGF-like ligands. In addition, the production of ROS was dependent on signaling by specific SFKs as well as de novo protein synthesis. Stable transfection of E-cadherin into MDA-MB-231 cells as well as E-cadherin-blocking assays revealed that E-cadherin-mediated cell–cell interactions were also essential for EGFR transactivation. Finally, EGFR transactivation was involved in the expression of c-Fos and c-Jun via the extracellular signal-regulated kinase signaling cascade. Taken together our data suggest that ligand release-independent transactivation of EGFR may diversify early TGF-β signaling and represent a novel pathway leading to TGF-β-mediated gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ADAM:

a disintegrin and a metalloproteinase

BMP:

bone morphogenetic protein

BSA:

bovine serum albumin

DMEM:

Dulbecco's modified Eagle's medium

DPI:

diphenylene iodonium

EGFR:

epidermal growth factor receptor

ELISA:

enzyme-linked immunosorbent assay

EMT:

epithelial to mesenchymal transition

ERK:

extracellular signal-regulated kinase

FBS:

fetal bovine serum

GPCR:

G-protein-coupled receptor

HB-EGF:

heparin-binding-epidermal growth factor

JNK:

c-Jun N-terminal kinase

LC-MS/MS:

liquid chromatography-mass spectrometry/mass spectrometry

mAb:

monoclonal antibody

MAPK:

mitogen-activated protein kinase

MET:

mesenchymal to epithelial transition

MMP:

metalloproteinase

NAC:

N-acetyl cysteine

pAb:

polyclonal antibody

PBS:

phosphate-buffered saline

PTP:

protein-tyrosine phosphatases

ROS:

reactive oxygen species

SDS–PAGE:

sodium dodecylsulfate polyacrylamide gel electrophoresis

SFK:

Src family tyrosine kinase

TGF:

transforming growth factor

TMPS:

triple-membrane-passing signaling

TPA:

12-O-tetradecanoylphorbol-13-acetate

References

  • Bahk YY, Kim SA, Kim JS, Euh HJ, Bai GH, Cho SN et al. (2004). Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 4: 3299–3307.

    Article  CAS  PubMed  Google Scholar 

  • Bain J, McLauchlan H, Elliott M, Cohen P . (2003). The specificities of protein kinase inhibitors: an update. Biochem J 371: 199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL . (2001). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276: 46707–46713.

    Article  CAS  PubMed  Google Scholar 

  • Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ . (1999). c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274: 8335–8343.

    Article  CAS  PubMed  Google Scholar 

  • Carmona-Cuenca I, Herrera B, Ventura JJ, Roncero C, Fernandez M, Fabregat I . (2005). EGF blocks NADPH oxidase activation by TGF-beta in fetal rat hepatocytes, impairing oxidative stress, and cell death. J Cell Physiol 207: 322–330.

    Article  Google Scholar 

  • Chen CR, Kang Y, Massague J . (2001). Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA 98: 992–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Paradies NE, Fedor-Chaiken M, Brackenbury R . (1997). E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms. J Cell Sci 110: 345–356.

    CAS  PubMed  Google Scholar 

  • Chiu C, Maddock DA, Zhang Q, Souza KP, Townsend AR, Wan Y . (2001). TGF-beta-induced p38 activation is mediated by Rac1-regulated generation of reactive oxygen species in cultured human keratinocytes. Int J Mol Med 8: 251–255.

    CAS  PubMed  Google Scholar 

  • Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S et al. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97: 900–907.

    Article  CAS  PubMed  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P . (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Eger A, Stockinger A, Schaffhauser B, Beug H, Foisner R . (2000). Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol 148: 173–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Lu Y, Wu X, Mendelsohn J . (1994). Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 269: 27595–27602.

    CAS  PubMed  Google Scholar 

  • Ferguson KM . (2004). Active and inactive conformations of the epidermal growth factor receptor. Biochem Soc Trans 32: 742–745.

    Article  CAS  PubMed  Google Scholar 

  • Fialka I, Schwarz H, Reichmann E, Oft M, Busslinger M, Beug H . (1996). The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J Cell Biol 132: 1115–1132.

    Article  CAS  PubMed  Google Scholar 

  • Finkel T . (2003). Oxidant signals and oxidative stress. Curr Opin Cell Biol 15: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Frank GD, Eguchi S, Inagami T, Motley ED . (2001). N-acetylcysteine inhibits angiotensin ii-mediated activation of extracellular signal-regulated kinase and epidermal growth factor receptor. Biochem Biophys Res Commun 280: 1116–1119.

    Article  CAS  PubMed  Google Scholar 

  • Hartsough MT, Mulder KM . (1995). Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 270: 7117–7124.

    Article  CAS  PubMed  Google Scholar 

  • Hocevar BA, Brown TL, Howe PH . (1999). TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18: 1345–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua H, Munk S, Goldberg H, Fantus IG, Whiteside CI . (2003). High glucose-suppressed endothelin-1 Ca2+ signaling via NADPH oxidase and diacylglycerol-sensitive protein kinase C isozymes in mesangial cells. J Biol Chem 278: 33951–33962.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto R, Mekada E . (2000). Heparin-binding EGF-like growth factor: a juxtacrine growth factor. Cytokine Growth Factor Rev 11: 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Kim JT, Joo CK . (2002). Involvement of cell–cell interactions in the rapid stimulation of Cas tyrosine phosphorylation and Src kinase activity by transforming growth factor-beta 1. J Biol Chem 277: 31938–31948.

    Article  CAS  PubMed  Google Scholar 

  • Kleiner DE, Stetler-Stevenson WG . (1994). Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 218: 325–329.

    Article  CAS  PubMed  Google Scholar 

  • Kovacs EM, Ali RG, McCormack AJ, Yap AS . (2002). E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem 277: 6708–6718.

    Article  CAS  PubMed  Google Scholar 

  • Lafon C, Mazars P, Guerrin M, Barboule N, Charcosset JY, Valette A . (1995). Early gene responses associated with transforming growth factor-beta 1 growth inhibition and autoinduction in MCF-7 breast adenocarcinoma cells. Biochim Biophys Acta 1266: 288–295.

    Article  PubMed  Google Scholar 

  • Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P . (1999). A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18: 3956–3963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy DE, Lapierre F, Liang W, Ye W, Lange CW, Li X et al. (1998). Matrix metalloproteinase inhibitors: a structure–activity study. J Med Chem 41: 199–223.

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Della Rocca GJ, van Biesen T, Luttrell DK, Lefkowitz RJ . (1997). Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J Biol Chem 272: 4637–4644.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (2000). How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1: 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Mulder KM . (2000). Role of Ras and Mapks in TGFbeta signaling. Cytokine Growth Factor Rev 11: 23–35.

    Article  CAS  PubMed  Google Scholar 

  • Murillo MM, del Castillo G, Sanchez A, Fernandez M, Fabregat I . (2005). Involvement of EGF receptor and c-Src in the survival signals induced by TGF-beta1 in hepatocytes. Oncogene 24: 4580–4587.

    Article  CAS  PubMed  Google Scholar 

  • Ohba M, Shibanuma M, Kuroki T, Nose K . (1994). Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126: 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  • Ostman A, Bohmer FD . (2001). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol 11: 258–266.

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Kim J, Seomun Y, Choi J, Kim DH, Han IO et al. (2001). Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem Biophys Res Commun 284: 966–971.

    Article  CAS  PubMed  Google Scholar 

  • Pece S, Gutkind JS . (2000). Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell–cell contact formation. J Biol Chem 275: 41227–41233.

    Article  CAS  PubMed  Google Scholar 

  • Pertovaara L, Sistonen L, Bos TJ, Vogt PK, Keski-Oja J, Alitalo K . (1989). Enhanced jun gene expression is an early genomic response to transforming growth factor beta stimulation. Mol Cell Biol 9: 1255–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piedra J, Miravet S, Castano J, Palmer HG, Heisterkamp N, Garcia de HA et al. (2003). p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin–alpha-catenin interaction. Mol Cell Biol 23: 2287–2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR . (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23: 1739–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK et al. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97: 1916–1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichmann E, Schwarz H, Deiner EM, Leitner I, Eilers M, Berger J et al. (1992). Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial–fibroblastoid cell conversion. Cell 71: 1103–1116.

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Bae YS, Lee SR, Kwon J . (2000). Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000: E1.

    Article  Google Scholar 

  • Rocic P, Lucchesi PA . (2005). NAD(P)H oxidases and TGF-beta-induced cardiac fibroblast differentiation: Nox-4 gets Smad. Circ Res 97: 850–852.

    Article  CAS  PubMed  Google Scholar 

  • Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ . (2005). Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-beta1-stimulated smooth muscle cells is pp60(c-src)/MEK-dependent. J Cell Physiol 204: 236–246.

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M . (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4: E131–E136.

    Article  CAS  PubMed  Google Scholar 

  • Singh AB, Harris RC . (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17: 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  • Sorescu D, Somers MJ, Lassegue B, Grant S, Harrison DG, Griendling KK . (2001). Electron spin resonance characterization of the NAD(P)H oxidase in vascular smooth muscle cells. Free Radic Biol Med 30: 603–612.

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Igarashi T, Mori H, Araki S . (2006). Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold. EMBO J 25: 2388–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeichi M . (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455.

    Article  CAS  PubMed  Google Scholar 

  • Takekawa M, Tatebayashi K, Itoh F, Adachi M, Imai K, Saito H . (2002). Smad-dependent GADD45beta expression mediates delayed activation of p38 MAP kinase by TGF-beta. EMBO J 21: 6473–6482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thannickal VJ, Fanburg BL . (1995). Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 270: 30334–30338.

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama-Tanaka Y, Matsubara H, Mori Y, Kosaki A, Kishimoto N, Amano K et al. (2002). Involvement of HB-EGF and EGF receptor transactivation in TGF-beta-mediated fibronectin expression in mesangial cells. Kidney Int 62: 799–808.

    Article  CAS  PubMed  Google Scholar 

  • Vinals F, Pouyssegur J . (2001). Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol 21: 7218–7230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzker R, Bohmer FD . (2003). Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4: 651–657.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Sharma KD, Takahashi T, Iwamoto R, Mekada E . (2002). Ligand-independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand-induced EGFR signaling. Mol Biol Cell 13: 2547–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S et al. (2001). Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 98: 6686–6691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP . (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23: 1155–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo X, Echan L, Hembach P, Tang HY, Speicher KD, Santoli D et al. (2001). Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins. Electrophoresis 22: 1603–1615.

    Article  CAS  PubMed  Google Scholar 

  • Zwick E, Hackel PO, Prenzel N, Ullrich A . (1999). The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol Sci 20: 408–412.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Eunjoo H Lee for her invaluable comments and critical review of this manuscript; Dr P Cossart (Institute of Pasteur, France) for providing human E-cadherin plasmid. This work was supported by Korea Research Foundation Grant (KRF-2004-041-C00307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-T Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, CK., Kim, HS., Park, JY. et al. Ligand release-independent transactivation of epidermal growth factor receptor by transforming growth factor-β involves multiple signaling pathways. Oncogene 27, 614–628 (2008). https://doi.org/10.1038/sj.onc.1210649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210649

Keywords

This article is cited by

Search

Quick links