Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells

Abstract

The forkhead transcription factor FOXO1, a downstream target of phosphatidylinositol-3-kinase/Akt signalling pathway, regulates cyclic differentiation and apoptosis in normal endometrium, but its role in endometrial carcinogenesis is unknown. Screening of endometrial cancer cell lines demonstrated that FOXO1 is expressed in HEC-1B cells, but not in Ishikawa cells, which in turn highly express the FOXO1 targeting E3-ubiquitin ligase Skp2. FOXO1 transcript levels were also lower in Ishikawa cells and treatment with the proteasomal inhibitor was insufficient to restore expression. Lack of FOXO1 expression in Ishikawa cells was not accounted for by differential promoter methylation or activity, but correlated with increased messenger RNA (mRNA) turnover. Comparative analysis demonstrated that HEC-1B cells proliferate slower, but are more resistant to paclitaxel-mediated cell death than Ishikawa cells, which were partially reversed upon silencing of FOXO1 in HEC-1B cells or its re-expression in Ishikawa cells. We further show that FOXO1 is required for the expression of the growth arrest- and DNA-damage-inducible gene GADD45α. Analysis of biopsy samples demonstrated a marked loss of FOXO1 and GADD45α mRNA and protein expression in endometrioid endometrial cancer compared to normal endometrium. Together, these observations suggest that loss of FOXO1 perturbs endometrial homeostasis, promotes uncontrolled cell proliferation and increases susceptibility to genotoxic insults.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 5
Figure 6
Figure 4
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

EEC:

endometrioid endometrial cancer

PI3K:

phosphatidylinositol-3-kinase

5-aza-dC:

5-aza-2′-deoxycytidine

GADD45α:

growth arrest- and DNA damage-inducible protein α of 45 kDa

MSP:

methylation-specific PCR

TMA:

tissue microarray

References

  • Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I . (2005). Endometrial cancer. Lancet 366: 491–505.

    Article  Google Scholar 

  • Arden KC . (2006). Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol 41: 709–717.

    Article  CAS  Google Scholar 

  • Bamberger AM, Riethdorf L, Milde-Langosch K, Bamberger CM, Thuneke I, Erdmann I et al. (1999). Strongly reduced expression of the cell cycle inhibitor p27 in endometrial neoplasia. Virchows Arch 434: 423–428.

    Article  CAS  Google Scholar 

  • Brosens JJ, Hayashi N, White JO . (1999). Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cells. Endocrinology 140: 4809–4820.

    Article  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  Google Scholar 

  • Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME . (2001). Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21: 952–965.

    Article  CAS  Google Scholar 

  • Brunet A, Sweeney LB, Sturqill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  Google Scholar 

  • Christian M, Zhang X, Schneider-Merck T, Unterman TG, Gellersen B, White JO et al. (2002). Cyclic AMP-induced forkhead transcription factor, FKHR, cooperates with CCAAT/enhancer-binding protein beta in differentiating human endometrial stroma cells. J Biol Chem 277: 20825–20832.

    Article  CAS  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW . (2006). Beyond PTEN mutations: the PI3K pathway as an integrator of multiple during tumourgenesis. Nat Rev Cancer 6: 184–192.

    Article  CAS  Google Scholar 

  • Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW et al. (2000). Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 20: 9138–9148.

    Article  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M . (1987). CpG islands in vertebrate genomes. J Mol Biol 196: 261–282.

    Article  CAS  Google Scholar 

  • Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM et al. (2005). Skp2 inhibits FOXO1 in tumour suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 102: 1649–1654.

    Article  CAS  Google Scholar 

  • Kajihara T, Jones M, Fusi L, Takano M, Feroze-Zaidi F, Pirianov G et al. (2006). Differential expression of FOXO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization. Mol Endocrinol 20: 2444–2455.

    Article  CAS  Google Scholar 

  • Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ, Roberts TM et al. (2003). A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 4: 463–476.

    Article  CAS  Google Scholar 

  • Kong D, Suzuki A, Zou TT, Sakurada A, Kemp LW, Wakatsuki S et al. (1997). PTEN1 is frequently mutated in primary endometrial carcinomas. Nat Genet 17: 143–144.

    Article  CAS  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ et al. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419: 316–321.

    Article  CAS  Google Scholar 

  • Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM . (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398: 630–634.

    Article  CAS  Google Scholar 

  • Labied S, Kajihara T, Madureira PA, Fusi L, Jones MC, Higham JM et al. (2006). Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium. Mol Endocrinol 20: 35–44.

    Article  CAS  Google Scholar 

  • Lahav-Baratz S, Ben-Izhak O, Sabo E, Ben-Eliezer S, Lavie O, Ishai D et al. (2004). Decreased level of the cell cycle regulator p27 and increased level of its ubiquitin ligase Skp2 in endometrial carcinoma but not in normal secretory or in hyperstimulated endometrium. Mol Hum Reprod 10: 567–572.

    Article  CAS  Google Scholar 

  • Lal A, Abdelmohsen K, Pullmann R, Kawai T, Galban S, Yang X et al. (2006). Posttranscriptional derepression of GADD45alpha by genotoxic stress. Mol Cell 22: 117–128.

    Article  CAS  Google Scholar 

  • Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A et al. (2005). Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65: 948–956.

    CAS  PubMed  Google Scholar 

  • Li LC, Dahiva R . (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics 18: 1427–1431.

    Article  CAS  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T . (2004). Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306: 2105–2108.

    Article  CAS  Google Scholar 

  • Plas DR, Thompson CB . (2003). Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J Biol Chem 278: 12361–12366.

    Article  CAS  Google Scholar 

  • Rena G, Woods YL, Prescott AR, Peggie M, Unterman TG, Williams MR et al. (2002). Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 21: 2263–2271.

    Article  CAS  Google Scholar 

  • Risinger JI, Maxwell GL, Chandramouli GV, Jazaeri A, Aprelikova O, Patterson T et al. (2003). Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res 63: 6–11.

    CAS  PubMed  Google Scholar 

  • Schuur ER, Loktev AV, Sharma M, Sun Z, Roth RA, Weigel RJ . (2001). Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J Biol Chem 276: 33554–33560.

    Article  CAS  Google Scholar 

  • Shang Y . (2006). Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nat Rev Cancer 6: 360–368.

    Article  CAS  Google Scholar 

  • Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY et al. (2001). Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 61: 5985–5991.

    CAS  PubMed  Google Scholar 

  • Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA et al. (2003). FOXO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278: 49795–49805.

    Article  CAS  Google Scholar 

  • Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ et al. (2006). Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 66: 212–220.

    Article  CAS  Google Scholar 

  • Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS et al. (2002). DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296: 530–534.

    Article  CAS  Google Scholar 

  • Varbiro G, Veres B, Gallyas Jr F, Sumeqi B . (2001). Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med 31: 548–558.

    Article  CAS  Google Scholar 

  • Vilgelm A, Lian Z, Wang H, Beauparlant SL, Klein-Szanto A, Ellenson LH et al. (2006). Akt-mediated phosphorylation and activation of estrogen receptor alpha is required for endometrial neoplastic transformation in Pten+/− mice. Cancer Res 66: 3375–3380.

    Article  CAS  Google Scholar 

  • Woods YL, Rena G, Morrice N, Barthel A, Becker W, Guo S et al. (2001). The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J 355: 597–607.

    Article  CAS  Google Scholar 

  • Yeap BB, Voon DC, Vivian JP, McCulloch RK, Thomson AM, Giles KM et al. (2002). Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3′-untranslated region of the androgen receptor messenger RNA. J Biol Chem 277: 27183–27192.

    Article  CAS  Google Scholar 

  • Zheng L, Pan H, Li S, Flesken-Nikitin A, Chen PL, Boyer TG et al. (2000). Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol Cell 6: 757–768.

    Article  CAS  Google Scholar 

  • Zoumpoulidou G, Jones MC, Fernandez de Mattos S, Francis JM, Fusi L, Lee YS et al. (2004). Convergence of interferon-gamma and progesterone signalling pathways in human endometrium: role of PIASy. Mol Endocrinol 18: 1988–1999.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Great Britain Sasakawa Foundation and the IOG Trust. We wish to thank Dr Akihiko Suenaga for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Brosens.

Additional information

Disclosure statement

The authors have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, T., Takano, M., Albergaria, A. et al. Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene 27, 9–19 (2008). https://doi.org/10.1038/sj.onc.1210626

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210626

Keywords

This article is cited by

Search

Quick links