Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Structure and acetyl-lysine recognition of the bromodomain

Abstract

Histone lysine acetylation is central to epigenetic control of gene transcription. The bromodomain, found in chromatin-associated proteins and histone acetyltranferases, functions as the sole protein module known to bind acetyl-lysine motifs. Recent structural and functional analyses of bromodomains' recognition of lysine-acetylated peptides derived from major acetylation sites in histones and cellular proteins provide new insights into differences in ligand binding selectivity as well as unifying features of histone recognition by the bromodomains. These new findings highlight the functional importance of bromodomain/acetyl-lysine binding as a pivotal mechanism for regulating protein–protein interactions in histone-directed chromatin remodeling and gene transcription. These new studies also support the notion that functional diversity of a conserved bromodomain structural fold is achieved by evolutionary changes of structurally flexible amino-acid sequences in the ligand binding site such as the ZA and BC loops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

CBP:

CREB-binding protein

PCAF:

p300/CBP-associated factor

References

  • Allfrey VG, Faulkner R, Mirsky AE . (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51: 786–794.

    CAS  PubMed  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

    Article  CAS  PubMed Central  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD et al. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8: 1243–1254.

    Article  CAS  PubMed Central  Google Scholar 

  • Berger J, Bird A . (2005). Role of MBD2 in gene regulation and tumorigenesis. Biochem Soc Trans 33: 1537–1540.

    Article  CAS  Google Scholar 

  • Berger SL . (2002). Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12: 142–148.

    Article  CAS  Google Scholar 

  • Cairns BR, Schlichter A, Erdjument-Bromage H, Tempst P, Kornberg RD, Winston F . (1999). Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell 4: 715–723.

    Article  CAS  Google Scholar 

  • Carey M, Li B, Workman JL . (2006). RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 24: 481–487.

    Article  CAS  PubMed Central  Google Scholar 

  • Chua P, Roeder GS . (1995). Bdf1, a yeast chromosomal protein required for sporulation. Mol Cell Biol 15: 3685–3696.

    Article  CAS  PubMed Central  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS et al. (2004). Regulation of p53 activity through lysine methylation. Nature 432: 353–360.

    Article  CAS  PubMed Central  Google Scholar 

  • Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K . (2003). The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA 100: 8758–8763.

    Article  CAS  Google Scholar 

  • Dey A, Ellenberg J, Farina A, Coleman AE, Maruyama T, Sciortino S et al. (2000). A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol 20: 6537–6549.

    Article  CAS  PubMed Central  Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM . (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496.

    Article  CAS  Google Scholar 

  • Dorr A, Kiermer V, Pedal A, Rackwitz HR, Henklein P, Schubert U et al. (2002). Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO J 21: 2715–2723.

    Article  CAS  PubMed Central  Google Scholar 

  • Du J, Nasir I, Benton BK, Kladde MP, Laurent BC . (1998). Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics 150: 987–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischle W, Wang Y, Allis CD . (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol 15: 172–183.

    Article  CAS  PubMed Central  Google Scholar 

  • Fujiki R, Kim MS, Sasaki Y, Yoshimura K, Kitagawa H, Kato S . (2005). Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J 24: 3881–3894.

    Article  CAS  PubMed Central  Google Scholar 

  • Georgakopoulos T, Gounalaki N, Thireos G . (1995). Gentic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2. Mol Gen Genet 246: 723–728.

    Article  CAS  Google Scholar 

  • Greenwald RJ, Tumang JR, Sinha A, Currier N, Cardiff RD, Rothstein TL et al. (2004). E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 103: 1475–1484.

    Article  CAS  Google Scholar 

  • Hassan AH, Awad S, Prochasson P . (2006). The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes. J Biol Chem 281: 18126–18134.

    Article  CAS  Google Scholar 

  • Hassan AH, Neely KE, Workman JL . (2001). Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104: 817–827.

    Article  CAS  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ et al. (2002). Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111: 369–379.

    Article  CAS  PubMed Central  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  Google Scholar 

  • Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA et al. (2006). Repression of p53 activity by Smyd2-mediated methylation. Nature 444: 629–632.

    Article  CAS  Google Scholar 

  • Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE . (2000). Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 304: 355–370.

    Article  CAS  PubMed Central  Google Scholar 

  • Jacobs SA, Khorasanizadeh S . (2002). Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295: 2080–2083.

    Article  CAS  Google Scholar 

  • Jacobson RH, Ladurner AG, King DS, Tjian R . (2000). Structure and function of a human TAFII250 double bromodomain module. Science 288: 1422–1425.

    Article  CAS  Google Scholar 

  • Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K . (2005). The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19: 523–534.

    Article  CAS  Google Scholar 

  • Jeanmougin F, Wurtz JM, Le Douarin B, Chambon P, Losson R . (1997). The bromodomain revisited. Trends Biochem Sci 22: 151–153.

    Article  CAS  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    Article  CAS  PubMed Central  Google Scholar 

  • Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR . (2004). Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J 23: 1348–1359.

    Article  CAS  PubMed Central  Google Scholar 

  • Kouzarides T . (2007). Chromatin modifications and their function. Cell 128: 693–705.

    Article  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  Google Scholar 

  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

    Article  CAS  Google Scholar 

  • Ladurner AG, Inouye C, Jain R, Tjian R . (2003). Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 11: 365–376.

    Article  CAS  Google Scholar 

  • Lemon B, Inouye C, King DS, Tjian R . (2001). Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414: 924–928.

    Article  CAS  Google Scholar 

  • Li B, Carey M, Workman JL . (2007). The role of chromatin during transcription. Cell 128: 707–719.

    Article  CAS  PubMed Central  Google Scholar 

  • Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD et al. (2006). Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442: 91–95.

    Article  CAS  PubMed Central  Google Scholar 

  • Martinez-Campa C, Politis P, Moreau JL, Kent N, Goodall J, Mellor J et al. (2004). Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol Cell 15: 69–81.

    Article  CAS  Google Scholar 

  • Muchardt C, Bourachot B, Reyes JC, Yaniv M . (1998). Ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex. EMBO J 17: 223–231.

    Article  CAS  PubMed Central  Google Scholar 

  • Muchardt C, Yaniv M . (1999). The mammalian SWI/SNF complex and the control of cell growth. Semin Cell Dev Biol 10: 189–195.

    Article  CAS  Google Scholar 

  • Mujtaba S, He Y, Zeng L, Farooq A, Carlson JE, Ott M et al. (2002). Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 9: 575–586.

    Article  CAS  Google Scholar 

  • Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand et al. (2004). Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13: 251–263.

    Article  CAS  Google Scholar 

  • Nakamura Y, Umehara T, Nakano K, Jang MK, Shirouzu M, Morita S et al. (2007). Crystal structure of the human BRD2 bromodomain: Insights into dimerization and recognition of acetylated histone h4. J Biol Chem 282: 4193–4201.

    Article  CAS  Google Scholar 

  • Neely KE, Workman JL . (2002). Histone acetylation and chromatin remodeling: which comes first? Mol Genet Metab 76: 1–5.

    Article  CAS  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T et al. (2002). Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416: 103–107.

    Article  CAS  Google Scholar 

  • Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P et al. (2000). The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19: 6141–6149.

    Article  CAS  PubMed Central  Google Scholar 

  • Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O et al. (2006). Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442: 100–103.

    Article  CAS  PubMed Central  Google Scholar 

  • Qiu J . (2006). Epigenetics: unfinished symphony. Nature 441: 143–145.

    Article  CAS  Google Scholar 

  • Ruthenburg AJ, Allis CD, Wysocka J . (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25: 15–30.

    Article  CAS  PubMed Central  Google Scholar 

  • Sachchidanand, Resnick-Silverman L, Yan S, Mutjaba S, Liu WJ, Zeng L et al. (2006). Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Chem Biol 13: 81–90.

    Article  CAS  Google Scholar 

  • Schweiger MR, You J, Howley PM . (2006). Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J Virol 80: 4276–4285.

    Article  CAS  PubMed Central  Google Scholar 

  • Shen W, Xu C, Huang W, Zhang J, Carlson JE, Tu X et al. (2007). Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. Biochemistry 46: 2100–2110.

    Article  CAS  Google Scholar 

  • Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T et al. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442: 96–99.

    Article  CAS  PubMed Central  Google Scholar 

  • Strahl BD, Allis CD . (2000). The language of covalent histone modifications. Nature 403: 41–45.

    Article  CAS  PubMed Central  Google Scholar 

  • Syntichaki P, Topalidou I, Thireos G . (2000). The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature 404: 414–417.

    Article  CAS  Google Scholar 

  • Turner BM . (1998). Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell Mol Life Sci 54: 21–31.

    Article  CAS  Google Scholar 

  • Turner BM . (2002). Cellular memory and the histone code. Cell 111: 285–291.

    Article  CAS  Google Scholar 

  • Workman JL . (2006). Nucleosome displacement in transcription. Genes Dev 20: 2009–2017.

    Article  CAS  Google Scholar 

  • Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J et al. (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86–90.

    Article  CAS  Google Scholar 

  • Zeng L, Li J, Muller M, Yan S, Mujtaba S, Pan C et al. (2005). Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J Am Chem Soc 127: 2376–2377.

    Article  CAS  Google Scholar 

  • Zeng L, Zhou MM . (2002). Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513: 124–128.

    Article  CAS  Google Scholar 

  • Zhou Y, Grummt I . (2005). The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 15: 1434–1438.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (M-MZ and SM) and by the funding from the National Science Foundation and the Dr Harold and Golden Lamport Chair (M-MZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-M Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujtaba, S., Zeng, L. & Zhou, MM. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26, 5521–5527 (2007). https://doi.org/10.1038/sj.onc.1210618

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210618

Keywords

This article is cited by

Search

Quick links