Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Assessment of MLH1 promoter methylation in relation to gene expression requires specific analysis

Abstract

About 15% of colorectal cancers are called MSI because they demonstrate microsatellite instability. In most sporadic MSI cases, the DNA mismatch repair (MMR) defect is due to methylation of the MLH1 promoter. In hereditary MSI cases, it is the consequence of germline mutations of one of the MMR genes. We analysed the MLH1 promoter for methylation using the methylation-specific PCR technique. With a previously described and widely used primer set, a number of samples with an intact MMR system were found to have methylated MLH1 promoter, a finding normally associated with lack of MLH1 expression. Another primer set, specific for a more proximal region of the promoter, gave results that correlated more closely with loss of MLH1 expression. We then conducted a survey of the literature on the subject, and a total of 161 articles were examined. Although it was shown as early as 1999 that absence of MLH1 expression correlated with methylation of the proximal but not distal regions of the MLH1 promoter, 60% of published studies analysed nonspecific regions. Our findings suggest that these studies are likely to have wrongly estimated the association between methylation of the MLH1 gene and the lack of its protein expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Aaltonen LA, Peltomäki P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP et al. (1993). Clues to the pathogenesis of familial colorectal cancer. Science 260: 812–816.

    Article  CAS  PubMed  Google Scholar 

  • Bird A . (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16: 6–21.

    Article  CAS  PubMed  Google Scholar 

  • Bird AP . (1986). CpG-rich islands and the function of DNA methylation. Nature 321: 206–213.

    Article  Google Scholar 

  • Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW et al. (1998). A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58: 5248–5257.

    CAS  PubMed  Google Scholar 

  • Brennetot C, Buhard O, Jourdan F, Flejou JF, Duval A, Hamelin R . (2005). Mononucleotide repeats BAT-26 and BAT-25 accurately detect MSI-H tumors and predict tumor content: implications for population screening. Int J Cancer 113: 445–450.

    Article  Google Scholar 

  • Deng G, Chen A, Hong J, Chae HS, Kim YS . (1999). Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res 59: 2029–2033.

    CAS  PubMed  Google Scholar 

  • Eads CA, Danenberg KD, Kawakami K, Saltz LB, Danenberg PV, Laird PW . (1999). CpG Island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res 59: 2302–2306.

    CAS  PubMed  Google Scholar 

  • Esteller M, Corn PG, Baylin SB, Herman JG . (2001). A gene hypermethylation profile of human cancer. Cancer Res 61: 3225–3229.

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B . (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301: 89–92.

    Article  CAS  PubMed  Google Scholar 

  • Fiegl H, Gattringer C, Widschwendter A, Schneitter A, Ramoni A, Sarlay D et al. (2004). Methylated DNA collected by tampons – a new tool to detect endometrial cancer. Cancer Epidemiol Biomarkers Prev 13: 882–888.

    CAS  PubMed  Google Scholar 

  • Frommer M, Mc Donald LE, Millar DS, Collis CM, Watt F, Grigg GW et al. (1992). Genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in indivual DNA strands. Proc Natl Acad Sci USA 89: 1827–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gayet J, Zhou XP, Duval A, Rolland S, Hoang JM, Cottu P et al. (2001). Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines. Oncogene 20: 5025–5032.

    Article  CAS  PubMed  Google Scholar 

  • Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD . (2001). Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res 61: 900–902.

    CAS  PubMed  Google Scholar 

  • Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB . (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JPJ et al. (1998). Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95: 6870–6875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ionov Y, Peinado M, Malkhosyan S, Shibata D, Perucho M . (1993). Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 558–561.

    Article  CAS  PubMed  Google Scholar 

  • Jourdan F, Sebbagh N, Comperat E, Mourra N, Flahault A, Olschwang S et al. (2003). Tissue microarray technology: validation in colorectal carcinoma and analysis of p53, hMLH1 and hMSH2 immunohistochemical expression. Virschows Archiv 443: 115–121.

    Article  CAS  Google Scholar 

  • Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H et al. (1997). Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57: 808–811.

    CAS  PubMed  Google Scholar 

  • Kass SU, Pruss D, Wolffe AP . (1997). How does DNA methylation repress transcription? Trends Genet 13: 444–449.

    Article  CAS  PubMed  Google Scholar 

  • Miyakura Y, Sugano K, Konishi F, Ichikawa A, Maekawa M, Shotoh K et al. (2001). Extensive methylation of hMLH1 promoter region predominates in proximal colon cancer with microsatellite instability. Gastroenterology 121: 1300–1309.

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Rashid A, Lee JH, Kim SG, Hamilton SR, Wu TT . (2003). Frequent CpG island methylation in serrated adenomas of the colorectum. Am J Path 162: 815–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peltomäki P, Vasen H . (2004). Mutations associated with HNPCC predisposition-Update of ICG-HNPCC/Insight mutation database. Dis Markers 20: 269–276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA et al. (2005). Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129: 837–845.

    Article  CAS  PubMed  Google Scholar 

  • Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K et al. (2002). Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 123: 1804–1811.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Itoh M, Toyota M, Kikuchi T, Kakiuchi H, Hinoda Y et al. (1999). Distinct methylation pattern and microsatellite instability in sporadic gastric cancer. Int J Cancer 83: 309–313.

    Article  CAS  PubMed  Google Scholar 

  • Thibodeau SN, Bren G, Schaid D . (1993). Microsatellite instability in cancer of the proximal colon. Science 260: 816–819.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Laird PW . (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25: 2532–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Itoh F, Nakamura H, Fukushima H, Sasaki S, Perucho M et al. (2001). Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res 61: 3139–3144.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Barry Iacopetta for critical reading of the article. This work was partly supported by Association de la Recherche contre le Cancer, and an Interface grant from INSERM/Assistance Publique-Hôpitaux de Paris (AP-HP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Hamelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capel, E., Fléjou, JF. & Hamelin, R. Assessment of MLH1 promoter methylation in relation to gene expression requires specific analysis. Oncogene 26, 7596–7600 (2007). https://doi.org/10.1038/sj.onc.1210581

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210581

Keywords

This article is cited by

Search

Quick links