Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glucocorticoid receptor overexpression exerts an antisurvival effect on human small cell lung cancer cells

Abstract

Small cell lung cancer (SCLC) is an aggressive tumour with an abysmal prognosis. These cancers are characteristically resistant to glucocorticoid (Gc) action, owing to impaired expression of the glucocorticoid receptor (GR). We identified reduced GR expression in human SCLC cell lines, compared to a non-SCLC cell line. The SCLC cells also showed no Gc inhibition of proliferation, in contrast to non-SCLC cells. Retroviral overexpression of GR resulted in significantly increased cell death, which was partially blocked by the GR antagonist, RU486. Indeed, in cells sorted for GR expression, there was rapid, near complete loss of live cells by 72 h, in contrast to control cells that proliferated as expected. Flow cytometry using Annexin V revealed that cell death was by apoptosis. In addition, confocal analysis of fixed cells showed that cells overexpressing GR displayed a significant increase in fragmenting apoptotic nuclei. Microarray studies showed that transgenic GR expression upregulated the proapoptotic genes, BAD and BAX. We have, therefore, identified a profound apoptotic effect of GR in SCLC cells, which may explain the low levels of endogenous GR in SCLC cells. Understanding how GR overexpression leads to apoptotic cell death in SCLC cells may uncover new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Baldi P, Long AD . (2001). A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509–519.

    Article  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP . (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.

    Article  CAS  Google Scholar 

  • Braunschweiger PG, Ting HL, Schiffer LM . (1983). Correlation between glucocorticoid receptor content and the anti-proliferative effect of dexamethasone in experimental solid tumors. Cancer Res 43: 4757–4761.

    CAS  PubMed  Google Scholar 

  • Clark AJL, Stewart MF, Lavender PM, Farrell W, Crosby SR, Rees LH et al. (1990). Defective glucocorticoid regulation of proopiomelanocortin gene-expression and peptide secretion in a small cell lung-cancer cell-line. J Clin Endocrinol Metabol 70: 485–490.

    Article  CAS  Google Scholar 

  • Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A et al. (1995). Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell-development and severely retards lung maturation. Genes Dev 9: 1608–1621.

    Article  CAS  Google Scholar 

  • Crosby SR, Stewart MF, Ratcliffe JG, White A . (1988). Direct measurement of the precursors of adrenocorticotropin in human-plasma by 2-site immunoradiometric assay. J Clin Endocrinol Metabol 67: 1272–1277.

    Article  CAS  Google Scholar 

  • Donn R, Berry A, Stevens A, Farrow S, Betts J, Stevens R et al. (2007). Use of gene expression profiling to identify a novel glucocorticoid sensitivity determining gene, BMPRII. FASEB J 21: 402–414.

    Article  CAS  Google Scholar 

  • Doucas V, Shi Y, Miyamoto S, West A, Verma I, Evans RM . (2000). Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 97: 11893–11898.

    Article  CAS  Google Scholar 

  • Farrell WE, Stewart MF, Clark AJL, Crosby SR, Davis JRE, White A . (1993). Glucocorticoid inhibition of Acth peptides – small-cell lung-cancer cell-lines are more resistant than pituitary corticotroph adenoma cells. J Mol Endocrinol 10: 25–32.

    Article  CAS  Google Scholar 

  • Galon J, Franchimont D, Hiroi N, Frey G, Boettner A, Ehrhart-Bornstein M et al. (2002). Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 16: 61–71.

    Article  CAS  Google Scholar 

  • Garside H, Stevens A, Farrow S, Normand C, Houle B, Berry A et al. (2004). Glucocorticoid ligands specify different interactions with NF-kappaB by allosteric effects on the glucocorticoid receptor DNA binding domain. J Biol Chem 279: 50050–50059.

    Article  CAS  Google Scholar 

  • Goya L, Maiyar AC, Ge Y, Firestone GL . (1993). Glucocorticoids induce a G1/G0 cell-cycle arrest of Con8 rat mammary-tumor cells that Is synchronously reversed by steroid withdrawal or addition of transforming growth-factor-alpha. Mol Endocrinol 7: 1121–1132.

    CAS  PubMed  Google Scholar 

  • Harmon JM, Norman MR, Fowlkes BJ, Thompson EB . (1979). Dexamethasone induces irreversible G1 arrest and death of a human lymphoid-cell line. J Cell Physiol 98: 267–278.

    Article  CAS  Google Scholar 

  • Hernandez J, Carrasco J, Belloso E, Giralt M, Bluethmann H, Kee Lee D et al. (2000). Metallothionein induction by restraint stress: role of glucocorticoids and IL-6. Cytokine 12: 791–796.

    Article  CAS  Google Scholar 

  • Herr I, Ucur E, Herzer K, Okouoyo S, Ridder R, Krammer PH et al. (2003). Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res 63: 3112–3120.

    CAS  PubMed  Google Scholar 

  • Hofmann J, Kaiser U, Maasberg M, Havemann K . (1995). Glucocorticoid receptors and growth inhibitory effects of dexamethasone in human lung cancer cell lines. Eur J Cancer 31A: 2053–2058.

    Article  CAS  Google Scholar 

  • Jackman DM, Johnson BE . (2005). Small-cell lung cancer. Lancet 366: 1385–1396.

    Article  CAS  Google Scholar 

  • Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121: 823–835.

    Article  CAS  Google Scholar 

  • Kim YH, Girard L, Giacomini CP, Wang P, Hernandez-Boussard T, Tibshirani R et al. (2006). Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 25: 130–138.

    Article  CAS  Google Scholar 

  • Kofler R . (2000). The molecular basis of glucocorticoid-induced apoptosis of lymphoblastic leukemia cells. Histochem Cell Biol 114: 1–7.

    CAS  PubMed  Google Scholar 

  • Leis H, Page A, Ramirez A, Bravo A, Segrelles C, Paramio J et al. (2004). Glucocorticoid receptor counteracts tumorigenic activity of Akt in skin through interference with the phosphatidylinositol 3-kinase signaling pathway. Mol Endocrinol 18: 303–311.

    Article  CAS  Google Scholar 

  • Li C, Wong WH . (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98: 31–36.

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Lu YS, Lien HC, Yeh PY, Yeh KH, Kuo ML, Kuo SH et al. (2005). Effects of glucocorticoids on the growth and chemosensitivity of carcinoma cells are heterogeneous and require high concentration of functional glucocorticoid receptors. World J Gastroenterol 11: 6373–6380.

    Article  CAS  Google Scholar 

  • Mathieu M, Gougat C, Jaffuel D, Danielsen M, Godard P, Bousquet J et al. (1999). The glucocorticoid receptor gene as a candidate for gene therapy in asthma. Gene Ther 6: 245–252.

    Article  CAS  Google Scholar 

  • Minna JD, Kurie JM, Jacks T . (2003). A big step in the study of small cell lung cancer. Cancer Cell 4: 163–166.

    Article  CAS  Google Scholar 

  • Mitelman F . (2000). Recurrent chromosome aberrations in cancer. Mutat Res 462: 247–253.

    Article  CAS  Google Scholar 

  • Mok CL, Gil-Gomez G, Williams O, Coles M, Taga S, Tolaini M et al. (1999). Bad can act as a key regulator of T cell apoptosis and T cell development. J Exp Med 189: 575–586.

    Article  CAS  Google Scholar 

  • Mortenson MM, Schlieman MG, Virudachalam S, Lara PN, Gandara DG, Davies AM et al. (2005). Reduction in BCL-2 levels by 26S proteasome inhibition with bortezomib is associated with induction of apoptosis in small cell lung cancer. Lung Cancer 49: 163–170.

    Article  Google Scholar 

  • Norman J, Franz M, Schiro R, Nicosia S, Docs J, Fabri PJ et al. (1994). Functional glucocorticoid receptor modulates pancreatic-carcinoma growth through an autocrine loop. J Surg Res 57: 33–38.

    Article  CAS  Google Scholar 

  • Norman MR, Thompson EB . (1977). Characterization of a glucocorticoid-sensitive human lymphoid-cell line. Cancer Res 37: 3785–3791.

    CAS  PubMed  Google Scholar 

  • Pang D, Conzen SD . (2004). Association of glucocorticoid receptor signaling with decreased effectiveness of chemotherapy in a breast cancer xenograft model. Breast Cancer Res Treat 88: S27–S28.

    Google Scholar 

  • Ray DW, Davis JRE, White A, Clark AJL . (1996). Glucocorticoid receptor structure and function in glucocorticoid-resistant small cell lung carcinoma cells. Cancer Res 56: 3276–3280.

    CAS  PubMed  Google Scholar 

  • Ray DW, Littlewood AC, Clark AJL, Davis JRE, White A . (1994). Human small-cell lung-cancer cell-lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function. J Clin Investig 93: 1625–1630.

    Article  CAS  Google Scholar 

  • Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R et al. (1998). DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93: 531–541.

    Article  CAS  Google Scholar 

  • Rogatsky I, Hittelman AB, Pearce D, Garabedian MJ . (1999). Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol Cell Biol 19: 5036–5049.

    Article  CAS  Google Scholar 

  • Rogatsky I, Trowbridge JM, Garabedian MJ . (1997). Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms. Mol Cell Biol 17: 3181–3193.

    Article  CAS  Google Scholar 

  • Sanchez I, Goya L, Vallerga AK, Firestone GL . (1993). Glucocorticoids reversibly arrest rat hepatoma-cell growth by inducing an early G(1) block in cell-cycle progression. Cell Growth Differ 4: 215–225.

    CAS  PubMed  Google Scholar 

  • Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R . (2004). Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ 11: S45–S55.

    Article  CAS  Google Scholar 

  • Tamura K, Miwa W, Maruyama T, Sekiya T, Murakami Y . (2002). Homozygous deletion on the chromosomal region 5q12.3 in human lines of small-cell lung cancers. J Hum Genetics 47: 348–354.

    Article  CAS  Google Scholar 

  • Wang Z, Garabedian MJ . (2003). Modulation of glucocorticoid receptor transcriptional activation, phosphorylation, and growth inhibition by p27(Kip1). J Biol Chem 278: 50897–50901.

    Article  CAS  Google Scholar 

  • White A, Clark AJL . (1993). The cellular and molecular-basis of the ectopic Acth syndrome. Clin Endocrinol 39: 131–141.

    Article  CAS  Google Scholar 

  • White A, Clark AJL, Stewart MF . (1990). The synthesis of Acth and related peptides by tumors. Baillieres Clin Endocrinol Metabol 4: 1–27.

    Article  CAS  Google Scholar 

  • Witschi H, Espiritu I, Ly M, Uyeminami D . (2005). The chemopreventive effects of orally administered dexamethasone in strain A/J mice following cessation of smoke exposure. Inhal Toxicol 17: 119–122.

    Article  CAS  Google Scholar 

  • Wu W, Chaudhuri S, Brickley DR, Pang D, Karrison T, Conzen SD . (2004). Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res 64: 1757–1764.

    Article  CAS  Google Scholar 

  • Zhu XY, Liu YJ, Lu J, Xu RB . (2004). Knockdown of glucocorticoid receptor expression by RNA interference promotes cell proliferation in murine macrophage RAW264.7 cells. J Steroid Biochem Mol Biol 92: 375–382.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Wellcome Trust for funding. DWR was supported by a GSK fellowship. The MRC funded a studentship for T Huynh. We are grateful to Dr J Freeth (AstraZeneca), Dr T Southgate (Paterson Institute for Cancer Research) for helpful advice and reagents, and to Dr Leo Zeef for his bioinformatic analysis of the array data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A White or D W Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, P., Le Rouzic, P., Gillingham, H. et al. Glucocorticoid receptor overexpression exerts an antisurvival effect on human small cell lung cancer cells. Oncogene 26, 7111–7121 (2007). https://doi.org/10.1038/sj.onc.1210524

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210524

Keywords

This article is cited by

Search

Quick links