Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inactivation of the ubiquitin conjugating enzyme UBE2Q2 causes a prophase arrest and enhanced apoptosis in response to microtubule inhibiting agents

Abstract

A putative ubiquitin conjugating enzyme known as UBE2Q2 was previously identified in a microarray screen for mitotic regulatory proteins. UBE2Q2 is very similar to another human protein, UBE2Q1 and orthologs from other higher eukaryotic species. In these studies, we demonstrate that UBE2Q2 can covalently bind ubiquitin on the active site cysteine in vitro and show that inhibition of this protein in vivo causes an early mitotic arrest and increased cytotoxicity when cells are treated with microtubule inhibiting agents (MIAs). Changes in cell cycle progression and viability are not observed in the absence of MIA treatment, indicating that UBE2Q2 is involved in the response to MIAs rather than performing a more general function in mitosis. Inhibition of the UBE2Q2 protein causes cells to undergo a prolonged prophase arrest suggesting that UBE2Q2 normally functions to antagonize an early mitotic checkpoint. Furthermore, UBE2Q2 inhibition sensitizes cells to the cytotoxic effects of MIAs through caspase-mediated apoptosis that is correlated with PARP-1 cleavage. These data provide insights into the cellular response to MIAs and demonstrate that inhibition of UBE2Q2 protein function may be useful in the treatment of malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aristarkhov A, Eytan E, Moghe A, Admon A, Hershko A, Ruderman JV . (1996). E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc Natl Acad Sci USA 93: 4294–4299.

    Article  CAS  Google Scholar 

  • Baker DJ, Chen J, van Deursen JM . (2005). The mitotic checkpoint in cancer and aging: what have mice taught us? Curr Opin Cell Biol 17: 583–589.

    Article  CAS  Google Scholar 

  • Banerjee A, Deshaies RJ, Chau V . (1995). Characterization of a dominant negative mutant of the cell cycle ubiquitin-conjugating enzyme Cdc34. J Biol Chem 270: 26209–26215.

    Article  CAS  Google Scholar 

  • Bhalla KN . (2003). Microtubule-targeted anticancer agents and apoptosis. Oncogene 22: 9075–9086.

    Article  CAS  Google Scholar 

  • Chen C, Okayama H . (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7: 2745–2752.

    Article  CAS  Google Scholar 

  • Corn PG, Summers MK, Fogt F, Virmani AK, Gazdar AF, Halazonetis TD et al. (2003). Frequent hypermethylation of the 5′ CpG island of the mitotic stress checkpoint gene Chfr in colorectal and non-small cell lung cancer. Carcinogenesis 24: 47–51.

    Article  CAS  Google Scholar 

  • Crawford DF, Piwnica-Worms H . (2001). The G(2) DNA damage checkpoint delays expression of genes encoding mitotic regulators. J Biol Chem 276: 37166–37177.

    Article  CAS  Google Scholar 

  • Gorbsky GJ . (2001). The mitotic spindle checkpoint. Curr Biol 11: R1001–R1004.

    Article  CAS  Google Scholar 

  • Gu H, Roizman B . (2003). The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5a. Proc Natl Acad Sci USA 100: 8963–8968.

    Article  CAS  Google Scholar 

  • Huang Y, Fang Y, Wu J, Dziadyk JM, Zhu X, Sui M et al. (2004). Regulation of Vinca alkaloid-induced apoptosis by NF-kappaB/IkappaB pathway in human tumor cells. Mol Cancer Ther 3: 271–277.

    CAS  PubMed  Google Scholar 

  • Koh DW, Dawson TM, Dawson VL . (2005). Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res 52: 5–14.

    Article  CAS  Google Scholar 

  • Kung AL, Sherwood SW, Schimke RT . (1990). Cell line-specific differences in the control of cell cycle progression in the absence of mitosis. Proc Natl Acad Sci USA 87: 9553–9557.

    Article  CAS  Google Scholar 

  • Lew DJ, Burke DJ . (2003). The spindle assembly and spindle position checkpoints. Annu Rev Genet 37: 251–282.

    Article  CAS  Google Scholar 

  • Li L, Aggarwal BB, Shishodia S, Abbruzzese J, Kurzrock R . (2004). Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101: 2351–2362.

    Article  CAS  Google Scholar 

  • Li YP, Lecker SH, Chen Y, Waddell ID, Goldberg AL, Reid MB . (2003). TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 17: 1048–1057.

    Article  CAS  Google Scholar 

  • Liu Q, Shang F, Whitcomb E, Guo W, Li W, Taylor A . (2006). Ubiquitin-conjugating enzyme 3 delays human lens epithelial cells in metaphase. Invest Ophthalmol Vis Sci 47: 1302–1309.

    Article  Google Scholar 

  • Matsusaka T, Pines J . (2004). Chfr acts with the p38 stress kinases to block entry to mitosis in mammalian cells. J Cell Biol 166: 507–516.

    Article  CAS  Google Scholar 

  • Melner MH, Ducharme NA, Brash AR, Winfrey VP, Olson GE . (2004). Differential expression of genes in the endometrium at implantation: upregulation of a novel member of the E2 class of ubiquitin-conjugating enzymes. Biol Reprod 70: 406–414.

    Article  CAS  Google Scholar 

  • Melner MH, Haas AL, Klein JM, Brash AR, Boeglin WE, Nagdas SK et al. (2006). Demonstration of ubiquitin thiolester formation of UBE2Q2 (UBCi), a novel ubiquitin conjugating enzyme with implantation site-specific expression. Biol Reprod 75: 395–406.

    Article  CAS  Google Scholar 

  • Mizuno K, Osada H, Konishi H, Tatematsu Y, Yatabe Y, Mitsudomi T et al. (2002). Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 21: 2328–2333.

    Article  CAS  Google Scholar 

  • Mollinedo F, Gajate C . (2003). Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8: 413–450.

    Article  CAS  Google Scholar 

  • Musacchio A, Hardwick KG . (2002). The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 3: 731–741.

    Article  CAS  Google Scholar 

  • Pallardy M, Biola A, Lebrec H, Breard J . (1999). Assessment of apoptosis in xenobiotic-induced immunotoxicity. Methods 19: 36–47.

    Article  CAS  Google Scholar 

  • Pati D, Meistrich ML, Plon SE . (1999). Human Cdc34 and Rad6B ubiquitin-conjugating enzymes target repressors of cyclic AMP-induced transcription for proteolysis. Mol Cell Biol 19: 5001–5013.

    Article  CAS  Google Scholar 

  • Pinkerton CR, McDermott B, Philip T, Biron P, Ardiet C, Vandenberg H et al. (1988). Continuous vincristine infusion as part of a high dose chemoradiotherapy regimen: drug kinetics and toxicity. Cancer Chemother Pharmacol 22: 271–274.

    Article  CAS  Google Scholar 

  • Pray TR, Parlati F, Huang J, Wong BR, Payan DG, Bennett MK et al. (2002). Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Updat 5: 249–258.

    Article  CAS  Google Scholar 

  • Rieder CL, Cole R . (2000). Microtubule disassembly delays the G2-M transition in vertebrates. Curr Biol 10: 1067–1070.

    Article  CAS  Google Scholar 

  • Rieder CL, Palazzo RE . (1992). Colcemid and the mitotic cycle. J Cell Sci 102 (Part 3): 387–392.

    CAS  PubMed  Google Scholar 

  • Rieder CL, Schultz A, Cole R, Sluder G . (1994). Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127: 1301–1310.

    Article  CAS  Google Scholar 

  • Schulze E, Altmann ME, Adham IM, Schulze B, Frode S, Engel W . (2003). The maintenance of neuromuscular function requires UBC-25 in Caenorhabditis elegans. Biochem Biophys Res Commun 305: 691–699.

    Article  CAS  Google Scholar 

  • Scolnick DM, Halazonetis TD . (2000). Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406: 430–435.

    Article  CAS  Google Scholar 

  • Seghatoleslam A, Zambrano A, Millon R, Ganguli G, Argentini M, Cromer A et al. (2006). Analysis of a novel human gene, LOC92912, over-expressed in hypopharyngeal tumours. Biochem Biophys Res Commun 339: 422–429.

    Article  CAS  Google Scholar 

  • Skerra A, Schmidt TG . (1999). Applications of a peptide ligand for streptavidin: the strep-tag. Biomol Eng 16: 79–86.

    Article  CAS  Google Scholar 

  • Tashiro K, Pando MP, Kanegae Y, Wamsley PM, Inoue S, Verma IM . (1997). Direct involvement of the ubiquitin-conjugating enzyme Ubc9/Hus5 in the degradation of IkappaBalpha. Proc Natl Acad Sci USA 94: 7862–7867.

    Article  CAS  Google Scholar 

  • Townsley FM, Aristarkhov A, Beck S, Hershko A, Ruderman JV . (1997). Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. Proc Natl Acad Sci USA 94: 2362–2367.

    Article  CAS  Google Scholar 

  • Toyota M, Sasaki Y, Satoh A, Ogi K, Kikuchi T, Suzuki H et al. (2003). Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci USA 100: 7818–7823.

    Article  CAS  Google Scholar 

  • Vodermaier HC . (2004). APC/C and SCF: controlling each other and the cell cycle. Curr Biol 14: R787–R796.

    Article  CAS  Google Scholar 

  • Weissman AM . (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169–178.

    Article  CAS  Google Scholar 

  • Xu B, Kim S, Kastan MB . (2001). Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21: 3445–3450.

    Article  CAS  Google Scholar 

  • Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F et al. (2005). Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19: 607–618.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the assistance of Drs Xinbin Chen and Michael Ruppert for critical review of this manuscript. We appreciate the use of the fluorescence microscope as well as assistance provided by Drs Louise Chow and Thomas Broker and members of their laboratory. This work was supported by NIH grant 5K08CA86941-5 from the NCI as well as a grant from The Research Institute at Children's Hospital, Birmingham, Alabama, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D F Crawford.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Brooks, W. & Crawford, D. Inactivation of the ubiquitin conjugating enzyme UBE2Q2 causes a prophase arrest and enhanced apoptosis in response to microtubule inhibiting agents. Oncogene 26, 6509–6517 (2007). https://doi.org/10.1038/sj.onc.1210471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210471

Keywords

This article is cited by

Search

Quick links